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1. Introduction

Composite materials, including high-performance fibres such
as glass, carbon, aramide, and organic fibers, have emerged as

alternative materials in various applications
due to their promising properties. Com-
posite fiber-reinforced polymers (CFRP),
which consist of a polymer matrix and rein-
forcing fibers like carbon fiber, are particu-
larly noteworthy for their use in hydrogen
storage vessels owing to their lightweight,
high-strength, and corrosion-resistant char-
acteristics. However, the design and testing
of these vessels are often costly and time-
consuming, impeding rapid iteration and
improvement of designs.

In recent decades, there has been a rapid
convergence between the field of machine
learning (ML) and industrial applications of
CFRP. From a general landscape overview
some recent literature’s papers[1] had shed
lights on the applications of the ML to
improve properties of CFRP. Wang et al.
had examined the use of ML in predicting

the long-term performance of fibre-reinforced polymer (FRP)
structures. This work showed how ML models can address
the nonlinear and complex nature of durability problems in
FRP composites under different environmental conditions.
The review emphasizes the importance of variables like exposure
time, temperature, pH value, and fibre volume fraction in pre-
dicting the residual mechanical properties of FRP composites.
For this reasons in other research works,[2] authors concentrated
in particular on various mechanical problems in fibre composite
materials (FCMs), such as constitutive laws, defect detection, and
fatigue failure. They highlighted effectiveness of ML models
like artificial neural network (ANNs), support vector machines
(SVMs), or convolutional neural networks (CNNs), in solving
complex problems that traditional methods struggle to address.
Liu et al.[2] evinced the advancements in automated defect detec-
tion and impact dynamics analysis throughML like autoencoders
(AEs) for noise reduction in image data and, convolutional neural
networks (CNNs) for impact damage monitoring. The mechani-
cal behavior of laminated FRP composites had become a central
matter of research.[3] The detailed exploration of various ML algo-
rithms, including deep learning (DL) models like CNNs and
LSTMs, proved the potential of these methods in solving complex
problems related to FRP composites. A key stone is the success-
ful combination of ML models with finite element modeling
(FEM), allowing more accurate and efficient predictions of com-
posite behavior. In this state-of-art review,[4] authors insist on the
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This study investigates the degradation process of composite materials used in
high-pressure hydrogen storage vessels by employing advanced computational
techniques. A recurrent neural network, specifically a bidirectional long short-
term memory (Bi-LSTM) network, is utilized to predict the temporal evolution of
ductile damage. The key degradation features are extracted from finite element
modeling (FEM) computations using group method of data handling algorithms
and treated as time-series data. Results demonstrate that the Bi-LSTM network
can accurately undergo both elastic and plastic behaviors of the composite under
tensile strength. Additionally, traditional machine learning (ML) algorithms such
as extreme gradient boosting and random forest are employed to forecast strain
degradation, showing promising results. This hybrid approach combining FEM,
ML, and deep learning provides a comprehensive method for predicting the
degradation of composite materials, offering significant potential for optimizing
the design and durability of hydrogen storage vessels.
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role of ML techniques for process simulation. The article offers a
comprehensive overview of ML application in the process simu-
lation of polymer composites. It focuses on highlighting the
potential of ML in enhancing the efficiency and accuracy of
simulations. This last point is traditionally computationally
expensive and complex. Several case studies and applications
where ML has been successfully integrated with conventional
simulation techniques like FEM. For instance, optimizing fibre
placement in automated processes was addressed.[4] The versa-
tility of ML across different aspects of composite manufacturing
was reported. The authors[4] pointed out promising ML techni-
ques such as graph neural networks (GNNs) and physics-
informed neural networks (PINNs) as potential future tools
for improving the simulations process.

The major drawbacks that were commonly reported from
those articles’ reviews are the following points. First there is a
limited scope of ML applications[1] the current applications are
primarily focused on tensile properties of FRP. There is a limited
exploration of other mechanical properties such as shear and
compressive strengths. The second point of weakness is the lim-
ited generalizability due to dataset quality.[1,2] The concern of
physical principles integration for interpretability was clearly
highlighted.[2] The current methods often overlook the physical
meaning of parameters, leading to a loss of model interpretabil-
ity. This lack of interpretability can be a significant drawback,
especially in scientific applications where understanding the
underlying physical phenomena is crucial. The last issue being
pointed out[3,4] is inherent to the field of ANNs. In fact there are
difficulties in selecting and configuring the appropriate ML
model for specific tasks. The complexity of determining the opti-
mal network architecture for DL models or choosing between
conventional and unconventional ML approaches is a recurrent
interrogation.

More specifically several articles were dealing with applica-
tions of ML in mechanical property prediction. Two principal
axes of research have emerged according to the level of the
numerical simulation realized. The first axe regroups macro-
scopic mechanical properties.[5–9] In this article,[5] the developed
model is a regression approach for predicting macroscopic trans-
verse mechanical properties of FRP laminae. The dataset was
generated by discrete element method (DEM) simulations of
2000 representative volume element (RVE) with 200 different
sets of fibre volume fractions and fibre radii. The model was able
to predict the macroscopic transverse mechanical properties.

While the second axe of research concerns the microscopical
level on damage modeling that occurs in CFRP.[10–12] Li et al. has
reported a coupled approach to overcome the inherent difficulty
to characterize the anisotropic plasticity. In this work,[10] a
mechanics-informedML approach that enables to employ a small
training database is proposed to predict the elastoplastic behav-
iors of unidirectional CFRP. Direct simulations based on a RVE
were used for validating the ML model. It was shown that the
proposed ML constitutive model offers excellent predictive accu-
racy even when using a small training dataset.

ML techniques were specifically used in studying composite
aging and degradation. Numerous studies[1,13] concerning aging
and durability prediction have been catching an increasing
interest. Very lately, advanced ML techniques for specialized
composite simulations have met a tremendous interest. In a

close relation to industrial concern about a better characteriza-
tion of damage triggering and cracks propagation’s, real- time
monitoring and prediction became a new paradigm.[14] In this
work,[15] a process-induced distortions (PIDs) of asymmetrical
laminates was predicted accurately and tailored at the early
design stage. Practically, rapid prediction of composite materials
behaviour using ANNs was realized. As stated by the authors of
this article,[16] because of the heterogeneity of composite materi-
als, there is a dilemma. Either “computational bottlenecks”, if
modeled rigorously or there is a solution inaccuracies in the
stress field and failure predictions if approximated. State-of-art
models of neural networks have been successfully deployed in
order to overcome that dilemma. A surrogate models that was
calibrated with a single microstructure was implemented. The
major outcome was obtaining a transformer network predicting
the history-dependent, nonlinear, and homogenized stress–
strain response at microstructure level.

RNNs were applied in the specific case of woven composites
exhibit complex meso-scale behavior.[17] As a basis for RNN
training, a mean-field model generated a comprehensive dataset
representing elastoplastic behavior. Time history of strain was
used to generate multiaxial stress–strain histories under random
walking a cyclic loading condition. In this principal contribution
of research,[13] a self-constructed strategy-based reinforcement
LSTM approach was adopted to improve generalization ability.
Two datasets, one consisting of finite element analysis (FEA)
results, and one of real experimental (EXP) data were selected
to verify the validity of the degradation performance predictions.
It was shown that the reinforced LSTM is more suitable for the
nonlinear degradation performance analysis of FRP, especially
with higher prediction accuracy for experimental data.

2. Problem Position and Model

2.1. Problem Position

The problem explored in this study, is the temporal evolution of a
ductile damage for a composite material under external tensile
force. In fact, the main difficult issue is the non-linear aspect
of degradation. Once values of physical properties are calculated
from FEM during a limited time of loading, ML model will be
able to make prediction for degradation. For this reason, we pro-
pose to combine a FEM and an ANN in order to obtain a hybrid
model with optimal characteristics. In fact, FEM allows to have a
considerable amount of results depending on the size of the
simulated 3D volume and its degree of discritization. Then, this
quantity of outcomes is advantageously used by the ANN.
Besides, as it is difficult to have a complete physical model
describing every degradation feature of a composite, we propose
to employ an alternative approach. By confronting a ML model to
a large number of composite material samples submitted to
external solicitation, this model will predict the temporal evolu-
tion of strain degradation by only preserving the main features.

2.2. Finite Element Model and Materials

This model will use the data generated by the FEM to feed the
ANN in order predict the composite ductile degradation. At first,
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the hybrid model aims to generate a trained ANN to have an
overview of the into degradation occurring during a short loading
time. Second, it attempts to predict the degradation’s evolution
during a time laps, then to forecast future evolution. Last goal is
to characterize more precisely the response of a composite mate-
rial submitted to tensile strength solicitation.

The general methodology used in this study for numerical
modeling is a classical schema[18] commonly followed.
Commercially available, finite element software, Abaqus was
used to perform a numerical simulation of mechanical properties
by using representative volume elements (RVEs).[19] The shape of
the RVE is chosen according to the microstructure.[20] This space
reduction allows to capture the entirety of the physical problem,
and reduce the time machine while preserving a faithful
determination of composite properties during modeling.
A centred cubic body RVE is chosen since the microstructure
is symmetrical.[21–23] In this study, unidirectional fiber is distrib-
uted at the center and the corner of the RVE, the body-centered
cubic symmetry is chosen as an ideal representation of a unidi-
rectional composites material.[24]

A 1 μm3 volume of the RVE is submitted to tensile traction in
(Z ) direction during a static loading. Then data extracted from
this one type of external solicitation are employed to feed
the ML/DL models, which will permit to depict the temporal
evolution of degradation process.

The studied composite material is composed from poly-amid
(PA12) matrix and reinforced with aramid glass fibers (AF). The
explored volume fraction of these long fiber is 35%.[25]

Table 1 presents the Young modulus EYoung and Poisson’s
ratio ν of both fiber and matrix.

The used plastics values for fibers are taken from the following
references (Campus datasheet DUPONT engineering Plastic
Zytel 70K20HSL BK284-PA66AF20). Figure 1, describes the
RVE submitted to tensile solicitation.

Both matrix and fiber are defined within Abaqus as an elasto-
plastic material.[26] Values of these mechanical properties are
resumed in Table Tabular values 2 (Table 2).

The generalization of Hooke’s law to a 3D continuum is a
relationship that can be interpreted as the elasticity tensor of a
fourth-rank. It describes the stress–strain relation in a linear
elastic material. Termed tensor of stiffness C, it is the elasticity
response of the heterogeneous material under solicitation,
obtained numerically. This tensor depends on different input
variables that are precised in the next Equation (1)

CðFν,Ematrix, νmatrix,Efiber, νfiberÞ (1)

where Fν is the volume fraction of the fibre inside the matrix.

Ematrix and Efibre are respectively the Young’s modulus of matrix
and fibe. νmatrix and νfibre are respectively the Poisson’s index of
matrix and fibre. Here, C is the relationship between the stress σ
and strain ε of the homogenized heterogeneous material[27]

obtained according to the following Equation (2)

Table 1. Detailed range values of the input parameters used in the python
script: matrix and fiber properties, volume fraction percentage, and
solicitation directions. The data are taken from the following website
ref. [61].

Matrix name Fiber name Volume fraction Solicitation

(EYoung [MPa], ν) (EYoung [MPa], ν) [%] External force

PA12 Glass 35% Tensile Z

(1250, 0.39) (8000, 0.34) – –

Figure 1. Illustration of a periodical RVEs of idealized unidirectional
oriented long fibre composites. The RVE made of the (PA12, glass) com-
posite designed with Abaqus software. The tensile strength solicitation
realized during the homogenization method is schematized by a red
arrow.

Table 2. Explored range of the input parameters of the plastic behaviour Ps
and the yield value YS of both matrix and fiber used in FEM simulation.
Extracted from the open access database.[61]

PA12 Aramid fiber

Plastic strain [MPa] Yield stress [%] Plastic strain [MPa] Yield stress [%]

0 0 0 0

0.16 0.01 26.02 0.54

7.71 0.5 49.28 1.08

14.8 1.0 68.01 1.62

21.3 1.5 81.52 2.17

26.9 1.99 89.97 2.71

32 2.5 95.14 3.25

36 3.0 98.62 3.79

38.3 3.5 101.39 4.32

39.7 4.0 103.83 4.86

40.3 4.5 105.34 5.4

40.5 5.0 – –

191.22 2.31 – –

200.01 2.6 – –

204.36 3.01 – –
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fσg ¼ Cfεg (2)

This form of tensor stiffness C with inner arguments resulting
from input parameters are related to mechanical properties of
the RVE. The diversity of RVE that can be obtained when each
argument in Equation (1) is changed recursively, a whole new C
is obtained. For this reason deep learning approach was applied
in this work.

According to the general theory of homogenization,[28–30] the
average stress and strain in RVE are calculated by the following
formula 3

8>>><
>>>:
σij ¼

1
V

Z
V
dVσij

εij ¼
1
V

Z
V
dVεij

(3)

where V is the total volume of the RVE. σij and εij are the micro
stress and strain tensor in terms of nodal displacements
resulting from mesh discretization.

2.3. Finite Element Mesh Generation

Figure 2 illustrates the evolution of the material strain in (Z )
direction S33 for different mash values that has been run over
in ABAQUS.

As the mesh density increases, the FEM solution will continue
to change until an optimal threshold is reached (red dashed line)
where no change in the calculated value occurs. Here the S33 that
reaches a threshold value and remain constant, is a proof that the
convergence is obtained.

The choice of hexahedral mesh is made based on two reasons.
Firstly, this type of mesh allows to attain more precision on the
deformation homogenization than with tetrahedral mesh.
Secondly, the longer time FEM’s calculation takes, the higher
precision in learning will be reached. Therefore, the fixed mesh
value is finely meshed corresponding to: 740 nodes, and 1480
hexahedral elements. Fibre part is finely meshed as well.

In FEM study, in order to reach convergence, the solution must
be mesh size independent. For these reasons, a balance between
fine mesh and time of calculus have to be found.

2.4. The Loading Conditions and Homogenized Properties

The structure has to be constrained while applying a unidirec-
tional load. The next Figure 3 illustrates the six faces that will
be constrained according to the applied load. For the case of ten-
sile strength in Z direction, the back and the bottom faces, will
only be constrained. Only the front face will be pulled. A displace-
ment in form of constraint, fixed at 20% of the total size of the
RVE(see Table 3).

The applied loading represents a strain of 7MPa which is 10%
of the nominal pressure of 70MPa inside a type 4 hydrogen
storage vessel.[31] The constraint of enforcing edges will remain
planar after deformation. The displacement of each pair of nodes
on the parallel boundary surface of the RVE (see 3) are written
according to the following formula
(
uAi ¼ εikxAk þ u�i
uBi ¼ εikxBk þ u�i

(4)

A and B designate of parallel surface contacts where i is the ith

number of the pair nodes. Those paired nodes of surfaces in
ABAQUS are referred when the geometry of the studied RVE
is initially undeformed.

To ensure the symmetry of mesh nodes on the periodic
plane, three partitions according to three symmetry plans
(XY ),(YZ ),(ZX ) are made. In this Equation (5) εik corresponds
to the average strain of the RVE and u�i is the displacement com-
ponents of the periodic part. Therefore, it is possible to write the
relative displacement between two nodes as follows[18]

uAi � uBi ¼ εikðxAk � xBk Þ ¼ εikΔxk (5)

where Δxk is the constant for each pair of boundary parallel sur-
faces (see 3). The previous equation is implemented by setting

Figure 2. a) The dependence of FEM solutions on mesh density for strain values S33 for an RVE. b) Evolution of CPU time according to number
of equations.
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the linear constraint of the displacement between each pair of
nodes on the parallel boundary surface. These boundary condi-
tions guarantees continuous displacement but also tensile
continuity on the parallel surfaces of the RVE. Each node of
a given surface, must correspond to a node on the opposite sur-
face. The six independent boundaries are calculated indepen-
dently for each RVE.

2.5. Ductile Damage Model for Composites Materials under
Solicitations

As the defined composite materials is displayed as elastoplastic
behaviour, studies using similar type of materials[32,33] have pro-
posed an isotropic damage models to predict the sample damage
evolution. Failure initiation, commonly occurs in the matrix
inside composites, making them to be considered as subject
to ductile-dominating failures. The void nucleation, growth,
and coalescence[34] are the foundation for developing and incor-
porating the damage model. The developed damage model[35,36]

assumes that the onset of damage εPlD is a function of stress
triaxiality η ¼ � σm

σeq
and the equivalent plastic strain rate εPl0 , as

shown in Equation (6). Where σm is stress state hydrostatic
component and, σeq is Huber–von Mises equivalent stress.

εPlD ðη, εPl0 Þ (6)

The stress triaxiality η is further defined in the following
Equation (7).[36] Where T= σxxþ σyyþ σzz is a trace of the stress
tensor in each direction, which equals the sum of principal
stresses. The stress triaxiality for uniaxial is fixed to
η=�0.333 and the equivalent plastic strain rate εPl0 ¼ 0, as
the materials are strain-rate-independent.

η ¼ �
1
3 traceðTÞ
σmises

(7)

To initiate damage, the equivalent plastic strain ðεPleqÞ reaches
a threshold value. This value is the fracture strain ðεPl0 Þ, where
the variable that characterize damage D is initially D= 0.
Here, the plastic deformation increases monotonically as the
state variable named ωD increases. For the damage to develop
and increases ðεPleqÞ > ðεPl0 Þ, the variable D increases from 0
to 1. At this maximum value, the material loses its load-carrying
capacity for the equivalent plastic strain ðεPleqÞ ¼ ðεPlfinaleÞ.

In the present study the damage evaluation law[35,36] can also
be defined using displacement at failure. The governing equation
for equivalent plastic displacement is reported in the following
equation

D ¼ DðuplÞ (8)

where upl is the effective plastic displacement. The linear evolu-
tion of the damage variable with effective plastic displacement is
assumed, as it is expressed in Equation (8).[36,37] The calculus of
the degradation of the composite material used in the present
study stopped automatically after reaching the fracture point.
The displacement at failure (upl) is in fact fixed at 0.10. The value
of 0.10. This value is significant because it represents the
threshold beyond which the material undergoes substantial
plastic deformation leading to failure. In ductile materials,
a displacement at failure of 0.10 correspond to a threshold point
where the material has accumulated sufficient strain to trigger
extensive micro void coalescence, leading to macroscopic
failure. The damage parameters are gathered in the following
Table 4

Using strain degradation as a variable in ABAQUS for time-
series analysis of ductile damage is justified due to its physical
significance in capturing the material’s failure mechanisms, the
advanced modeling capabilities of ABAQUS, and the predictive
power of time-series analysis. This approach is expected to

Figure 3. In red are represented the back and front faces. In green the top and bottom face. Then in blue color the left and right faces. The nodes are
schematized as square grids.

Table 3. The multi-freedom constraint equations for nodal displacements
of a 3-D RVE.

Case Coefficients Nodel set DOF load

Uni-axial Z 1 Z-front 3 20%

Uni-axial Z �1 RP-set 3 20%

Table 4. Damage parameters used to implement numerically the ductile
damage of the composite RVE.[62]

Fracture strain Stress triaxiality Strain rate

0.05 �0.333 0.1
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enhance the understanding of material degradation but also pro-
vides practical tools for improving the safety and durability of
critical structures like hydrogen storage vessels.

2.6. Results of FEM: as Input Dataset for the Neural Network

The results obtained from FEMwill be used in DL neural network.
Figure 4, shows the composite response under tensile solicitation
obtained from FEM simulation. According to these results we
notice that, the tensile strength solicitation causes localized dam-
age in thematrix. At contrary, the fibre in center or corners are less
affected (in green and blue). The fibre is the component that
support all the stress with minimum deformation.

Figure 5 resumes the cumulative temporal evolution of the
strain degradation variable SDEG from T= 0 to T= 1. The
non-dimensional time for one RVE is accumulated over all
nodes. The total simulation time is subdivided into 20 frames
which correspond to a time step of dT= 0.05. One can notice
that initially when the displacement load is applied in Abaqus,
most values of SDEG are null, then there are increasing levels
of degradation with sharp transitions.

When a tensile strength in the direction of the fibre is applied,
the strain is distributed on average equally on all nodes. With time,
dynamical evolution of the strain degradation present the shape of
a stair-step. At each step of the temporal discritization, when the
degradation value is low at around 0.04 SI, the RVE is minimizing
the strain over all the nodes. Then, with increasing deformation,
the degradation is no more possible to redistribute over all nodes.
As a consequence, more sharps steps occur, leading to higher deg-
radation’s values. Another way to visualize the strain degradation
is, to draw the temporal evolution.

According to Figure 6, a monotonic increasing of strain deg-
radation with time is reported. Initially, no degradation of the
material is observed. Then, after a transient initially flat, a rising
value is occurring until it reached the degradation limit. This
curve can be seen as an addition of a linear part related to elas-
ticity and several short peaks that reflect the nonlinear part
related to plastic response to strain. On the left of the strain

degradation curve is drawn the histogram of the occurrences
of each value of strain degradation. The lowest values between
0 and 0.03 are the most present over all the nodes of the
RVE. Later with advancing simulation’s time, there is a slip from
low values of SDEG to higher ones. This effect is underlined by
the kernel density estimation (kde) curve.[38] Here, we can see
that the initial narrow peak at 0.025 is moved to higher values
of SDEG= 0.10 with a larger spread.

This visualization allows to identify key phases in the degrada-
tion process, such as the onset of significant damage, the progres-
sion of degradation. It provides insights into both the elastic and
plastic behavior of materials and helps in predicting the material’s
lifespan under loading conditions. For critical components as
hydrogen storage vessels, understanding the time-dependent
degradation of materials is crucial. The SDEG versus time curve
provides a direct way to assess how quickly a material might fail,
the previous curves 6 reveal critical points where degradation accel-
erates, indicating the transition from elastic to plastic behavior.

Figure 4. The Z-tensile strength solicitation’s effect on degradation realized by the homogenization method on one REV ðFν ¼ 35%,
Fiber ¼ aramid,Matrix ¼ PA12Þ at last temporal frame T= 1.0. The overall scalar stiffness degradation is represented in color map.

Figure 5. Evolution of the strain degradation during static load displace-
ment of 20% for Z-tensile strength at each node of one RVE. The record is
running over all the dimensionless time of loading Tinitial= 0 to Tfinal= 1.
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3. Classical Machine Learning Prediction of
Degradation as a Time Series

In this study, the degradation of strain under applied tensile
strength is treated as a time series. The temporal evolution of
SDEG is forecasted using three classical algorithms[39]: extreme
gradient boosting (XGBoost),[40] random forest (RF),[41] and sup-
port vector regressor (SVR) with a radial basis function as a
kernel.[42]

Time series data is transformed into a supervised learning
problem, allowing the model to be trained on past values to pre-
dict future ones. This transformation involves using a sliding
window, shifting the window of inputs and expected outputs for-
ward through time to create new samples for the supervised
learning model. The precision of forecasting depends on the
number of observations recorded for a given time in a time-series
dataset, and traditionally, two types of datasets are distin-
guished:[43] 1) Univariate time series: These datasets involve
observing only a single variable at each time, such as hourly tem-
perature. In our case, the univariate time-series dataset is the
SDEG; 2) Multivariate time series: In these datasets, two or more
variables are observed at each time. Here, two features are
selected using the GMDH feature selection algorithm, discussed
in the next section. The chosen observables are the time step and
the component of stress in the X direction, referred to as S.S11.

The model must be trained on past values to predict future
ones, leading to the utilization of walk-forward validation.[44,45]

This validation technique involves splitting the dataset into train-
ing and test sets by selecting a cut point. All data, except the last

100 time steps, are used for training, and the final 100 time steps
are reserved for testing.

In making a one-step forecast, predicting one-time step into
the future, the model is evaluated by training on the training
dataset and predicting the first step in the test dataset.
Subsequently, the actual observation from the test set is added
to the training dataset, and the model is refitted. This process
is repeated for the entire test dataset, yielding a one-step predic-
tion for the entire test dataset, from which an error measure can
be calculated to evaluate model performance (see Figure 7).

In this implementation, only the preceding 200 time steps are
utilized as input to the model, with default values for hyperpara-
meters. The loss function is modified to the squared error to pre-
vent warning messages, and a total of 1000 trees are included in
the ensemble to avoid under-learning. Table 5 provides a
summary of the hyperparameter values for the XGBoost, RF,
and SVR models.

The next step involves using the model to make predictions on
new SDEG data. This process, known as an out-of-sample fore-
cast, extends the predictions beyond the training dataset. Model
performance is evaluated using the mean absolute error (MAE)
metric. The strain degradation’s temporal evolution is illustrated
in Figure 8, depicting the FEM simulation time in red and the
200 forecasted values from the iterative XGBoost prediction in
blue crosses.

This visual representation indicates a promising forecasting
trend. Beyond the dimensionless time T= 1, the XGBoost recur-
sive forecasting captures the last high values of strain degrada-
tion. Shortly after T= 1.0, the forecasted SDEG values exhibit a

Figure 6. In a) Histogram of strain degradation occurrences. In blue is drawn the kde curve fitting. In b) is drawn the graphical representation of the
temporal evolution of the strain degradation during static load displacement of 20% for Z-tensile strength from the adimensional time T= 0 to T= 1.

Figure 7. Illustration of the idea of walk forward validation on time-series data with sliding window.
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peak (blue star dots), reproducing the nonlinearity of the last
peak. Subsequently, more regular values are obtained over time.

To compare the forecasting results across multiple ML algo-
rithms, various metrics are employed (see Table 6). Notably, the
R2 score metric identifies the RF model as the best performer in
forecasting SDEG values, a result consistent with the known
tendency of RF to overfit. However, XGBoost and SVR (RBF)
exhibit comparable performance, particularly in terms of the
MAE metric over 20 time-series split cross-validation. The
SVR model with a radial basis function kernel demonstrates
slightly lower performance.

Overall, except for the RF model, XGBoost emerges as the
best-performing model based on the MSE, RMSE, and MAE
metrics. In addition to those supervised method, let’s present

a statistical method as auto-regressive integrated moving average
(ARIMA) modeling method.[46]

The ARIMA algorithm operates on the premise that informa-
tion gleaned from past values of a time series can singularly suf-
fice to predict future values. The model elucidates a given time
series based on its historical values, encompassing its own lags
and lagged forecast errors. The ARIMA equation used for fore-
casting future values is articulated as follows

YARIMA
t ¼ αþ β1Yt�1 þ β2Yt�2 þ : : : þ βpYt�pεt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

YAR
t

þ ϕ1εt�1 þ : : : þ ϕqεt�q|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
YMA
t

(9)

where: Yt: is the value of the time series at time t; α: is the
constant term; βp: are the coefficients of the autoregressive terms;
ϕq: are the coefficients of the moving average terms and ε: is the
white noise error term.

Here, the predicted variable YARIMA
t comprises auto-regressive

(AR) terms denoted as YAR
t and, moving average (MA) terms

denoted as YMA
t . Where α is a constant and can be interpreted

as the mean value of the series. It represents the level around
which the time series fluctuates. The order of the AR term
denoted as p and the order of the MA term denoted as q.
The AR term YAR

t relies solely on its own lags, that is,
Yt�1,Yt�2, : : : ,Yt�p. Conversely, the MA term YMA

t hinges on
lagged forecast errors, that is, εt�1, : : : , εt�q. The initial step
involves differentiation to render the time-series stationary.

In time-series cross-validation, several steps back in time are
taken, forecasting into the future for each step, followed by a
comparison against the actual values. The training and testing
dataset of the time series is partitioned into a 75:25 ratio, preserv-
ing the time series’ order for forecasting. A stepwise approach
explores multiple combinations of p,d,q parameters to determine
the optimal model with the least Akaike Information Criteria
(AIC). A lower AIC indicates a better model fit.

The optimized values of p,d,q for the best ARIMA model,
obtained by minimizing the AIC criteria, are summarized in
Table 7.

Figure 9 illustrates the superposition of the temporal evolution
of strain degradation’s actual values (in blue) and forecasted val-
ues (in green) obtained by the ARIMA method. The gray shaded
area represents the minimum and maximum predicted values.
Several observations arise from Figure 9. Firstly, the model
exhibits a commendable prediction of the general trend of the
degradation curve, accurately predicting high degradation values
beyond the dimensionless time T= 1.0 over 1000 time steps.
Secondly, there is an absence of sharp transitions in values.
The inset showcases the initial hundred values, depicting a grad-
ual decrease in strain degradation over time before reaching a
plateau. This behavior corresponds to a redistributed strain

Table 5. Sum up of the hyper parameters values used for the recursive
XGboost, RF, SVR forecasting algorithms for the SDEG time’s series.

Model Hyperparamters

XGBoost Metric Nestimators

Squared error 1000

RF Metric Nestimators

Squared error 1000

SVR Kernel γ C ε

rbf 0.5 10 0.05

Figure 8. Superposition of temporal evolution of expected strain
degradation (red line) and forecasted values.

Table 6. Metrics values obtained from the classical ML algorithm for
forecasting over strain degradation values SDEG with time-series split
cross validation.

Model name R2 MAE MAPE RMSE

XGBoost 0.965 �0.0007 �0.0269 �0.0055

RF 0.989 0.001 0.005 0.001

SVR(rbf ) �3.891 0.023 0.173 0.027

Table 7. Optimized value of the best ARIMA model used for forecasting.
The values p,d,q are obtained by minimizing the AIC criteria.

ARIMA parameters p q d

ARIMA 2 1 3
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across each node of the RVE. Lastly, the large spread (in gray
shade) of the predicted minimum and maximum values of strain
degradation curtails the scope of long-term predictions.

In the context of modeling temporal damage evolution in
RVEs, a comprehensive evaluation reveals the efficiency of
classical ML methods, namely XGBoost, RF, and SVR(rbf ), when
applied recursively. These classical models demonstrate a
commendable ability to generate accurate predictions for strain
degradation. In stark contrast, the long short-term memory
(LSTM) network exhibits a notably lower accuracy, especially
when no hypertuning is operated, hovering around 25%. This
outcome aligns with a broader observation,[47] emphasizing
the superior performance of ML methods over DL methods,
particularly in short-term forecasted periods.

It is crucial to highlight that both DL andML predictions exhibit
diminished precision beyond peak values. This diminished accu-
racy in forecasting post-peaks may be attributed to the inherent
nonlinearity affecting certain nodes in the material during specific
loading conditions. This complexity poses a significant challenge
in accurately simulating damage in composite materials.

Furthermore, it is noteworthy that ML algorithms, exemplified
by XGBoost, outperform DL methods, such as LSTM, in repro-
ducing elastoplastic behavior. This observation underscores the
advantage of classical ML approaches in capturing the intricacies
of material response, particularly in scenarios involving complex
elastic and plastic deformations.

4. Deep Learning Architecture

DL architecture, a subset of ML, emulates the structure of a
biologically inspired ANN.[48] This intricate system is defined
by a layered arrangement of interconnected neurons, combining
various algorithms to model and process highly complex nonlin-
ear relationships (refer to Figure 10 for a visual representation).

The foundation of neural networks lies in the multitude of
artificial neurons organized into layers. These layers, including
the input layer, hidden layers, and the output layer, facilitate com-
munication only with the immediately preceding and following
layers. Information traverses through the ANN from the input
layer, where external data is received, to the output layer, which
produces the final result. The number of hidden layers is contin-
gent upon the complexity of the problem at hand. Within each
hidden layer, neurons receive input signals, process them by
combining with their internal state, and generate output signals.

Each neuron boasts multiple input and output connections,
assigned weights that collectively form the layer of the ANN.
The learning process involves network adaptation, specifically
the adjustment of connection weights, aiming to minimize
observed errors in the network’s output.

Given its versatile and self-adapting architecture, RNN
emerges as a specialized class of neural networks designed to
handle temporal data. RNN neurons are equipped with a cell
state/memory, and input processing aligns with this internal
state, facilitated by loops within the network. To address the
limitation of short-term memory in RNNs, LSTM models are
introduced.

Prior to applying RNN to data, a crucial preprocessing step
involves refining the data through feature selection. This metic-
ulous process enhances the effectiveness of the neural network
in extracting meaningful patterns and insights.

4.1. Data PreProcessing: Use of the Group Method of Data
Handling (GMDH) for Feature Selection

In the late 1968s, Ivakhnenko introduced a groundbreaking
mathematical algorithm designed to tackle intricate and nonlin-
ear problems. Termed the group method for data handling
(GMDH) algorithm,[49] this solution provided a self-contained

Figure 9. Graph superposition of temporal evolution of strain degradation SDEG of actual values (in blue) and forecasted values (in green) obtained by
ARIMA method. The gray shaded area represent minimum and maximal values.
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model capable of addressing both classification and regression
problems. GMDH operates in diverse fields such as data mining,
knowledge discovery, optimization, and pattern recognition.[50]

Its predictive capabilities have found applications in chemis-
try,[51] environmental studies,[52] and civil engineering.[53]

Notably, GMDH algorithms offer the automation of feature
selection for datasets.

The GMDH algorithm excels in automatically identifying
interrelations in data, selecting optimal model structures or
networks, and enhancing the accuracy of existing algorithms.
By minimizing external operator influence, the computer auton-
omously determines the optimal model structure or governing
laws within a system.

The mapping of input to output variables is orchestrated by
the GMDH neural network, functioning as a nonlinear function
known as the Volterra series. The Equation (10) captures this
relationship, illustrating the complexity of the mapping

y ¼ a0 þ
Xm
i¼0

aixi þ
Xm
i¼1

Xm
j¼1

aijxixj þ
Xm
i¼1

Xm
j¼1

Xm
k¼1

aijkxixjxk (10)

where xðx1, x2, : : : , xmÞ represents the input vector with
extracted features, aða1, a2, : : : , amÞ symbolizes the coefficients
or weights vector, and y denotes the network output. The
GMDH algorithm aims to unravel the unknown coefficients ai
in this complex equation.

The Volterra series, expressed as a two-variable second-degree
polynomial in Equation (11), provides a more comprehensible
form for understanding

Gijðxi, xjÞ ¼ a0 þ a1xi þ a2xj þ a3x2i þ a4x2j þ a5xixj (11)

To determine the ai coefficients, regression methods are
employed for each pair of xi and xj input variables. The optimi-
zation of coefficients involves minimizing the squared error EL in
Equation (12), ensuring the model’s fidelity to the data.[54,55]

EL ¼
Xm
i¼1

ðyi � GLiÞ2 (12)

The GmdhPy package,[56] a freely available tool, facilitates
feature selection. The self-organized DL polynomial neural

network, as depicted in Figure 11, showcases the parameters
autonomously explored by GMDH during calculations.

From this representation, it’s evident that only one feature has
been retained. For external traction solicitation, two hidden
layers were employed to regress the output values of the scalar
stiffness degradation variable SDEG.

To validate the GMDH results, MSE, RMSE, and R-squared
(R2) metrics are employed, as summarized in Table 8.

4.2. The Structure of the LSTM Model for Deep Learning

When dissecting a symphony, isolating each note may initially
result in a cacophony of sounds, rendering individual notes
unclear. The appreciation of each note relies on the context
provided by previous ones, demonstrating the persistence of
auditory information. RNN address this temporal dependency

Figure 11. Representation of the self-organized DL polynomial neural
network. Only one main features inside orange ellipse have been selected
to predict the strain degradation SDEG values for traction in Z direction.

Figure 10. Schematic representation of artificial neural network featuring several hidden layers of neurons between the input and output layers.
a) represent input layer (IL), hidden layer (HL) and each node fully connected to the output layer (OL). b) Individual node schematize set of function
to estimate the weight (WE) and biasis for each node. The final value is obtained through the activation function (AF) adapted from.[59]
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challenge by incorporating the temporal variable underlying
degradation data. These networks, featuring internal loops,
enable information to persist over time.

LSTMs belong to the RNN family and excel in learning long-
term dependencies. Figure 12 illustrates the LSTM architecture,
where pink circles represent pointwise operations, yellow boxes
denote learned neural network layers, and lines symbolize
concatenation or copying of content. Each rectangle signifies a
cell state C, and gates, comprising sigmoid neural net layers
and point wise multiplication operations, regulate the addition
or removal of information from the cell state.

The dataset comprises 36 observable variables from the FEM
output database, with 28 120 rows representing 20 frames for all
discretized elements. For forecasting degradation values, two
approaches—multivariate and univariate time series—are
employed. To prepare the data for LSTM architecture, two key
concepts are introduced: 1) Horizon: The number of time steps
to predict in the future; and 2) Window: The number of time
steps from the past used to predict horizon values.

The LSTMmodel parameters for both univariate andmultivar-
iate time series are summarized in the Table 9 below

The predictive performance of the LSTM model is enhanced
using the rectified linear unit (ReLU) activation function, intro-
ducing nonlinearity. The ReLU function is described in
Equation (13). The performance of the LSTM neural network
is evaluated using four metrics: RMSE, MAE, MAPE, and
accuracy.

ReLUðxÞ ¼
�
x if x > 0

0 if x < 0 (13)

The LSTM neural network used in this study is made of one
input layer of 300 neurons of the range of the size of the window
of time’s series that is trained on. Then there are three hidden
layers of 300 cells. The last output layers are of type dense, which
means all nodes of the network are connected. The last layer is
made of the same number as the number of future points it is
supposed to predict. Here, future points are called Horizon.

In the following Table 10 is summed up the detailed architec-
ture of the ANNs that was implemented for the forecasting.

4.3. Results

This section presents the results for both multivariate and
univariate models (see Figure 13 and 14) aimed at predicting
the temporal evolution of strain degradation under tensile
strength in the Z direction.

Table 8. Metrics values obtained from the GMDH feature selection for
regression over strain degradation values SDEG for tensile strain.

Metrics RMSE MSE MAE R2

values 7.2� 10�7 5.2� 10�13 5.9� 10�13 0.999

Figure 12. Schematic representation of a DL network. LSTM type of ANN featuring several hidden layers of neurons between the input and output layers.
Adapted from.[60]

Table 9. Table reporting horizon and windows size values for both
univariate and multivariate approaches for LSTM.

Model Nbr Model type Horizon size Window size

Univariate LSTM 100 100

Multivariate LSTM 100 100

Table 10. Table Summing up the different ANN: LSTM, Bi-LSTM,
Bi-LSTM-Attention, tested to predict the degradation value.

ANN Hidden
layer

Nbr of neurons
Hidden(1)

Nbr of neurons
Dense(1)

Dropout
rate

Tot
parameters

LSTM 3 300 100 0.2 1.539.007

Bi-LSTM 3 300 100 0.2 4.317.957

Bi-LSTM
Attention

1 300 100 0.2 850 957
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4.3.1. Multivariate Model

The multivariate model retains all features, with strain
degradation as the dependent variable for prediction. Three

models—LSTM, Bi-LSTM, and Bi-LSTM-attention—are com-
pared 13. For both LSTM and Bi-LSTM models, the accuracy
metric reached 0.8 for the validation datasets, showing a
clear increasing trend for both learning curves of training and

Figure 13. Graphs representing the evolution of accuracy metric and loss function according to the number of epochs for LSTM, Bi-LSTM, Bi-LSTM-
attention ANNs for multivariate approach.

www.advancedsciencenews.com www.entechnol.de

Energy Technol. 2024, 2401045 2401045 (12 of 16) © 2024 Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.entechnol.de


validation datasets. However, the Bi-LSTM model with an atten-
tion layer struggled to reach a metric accuracy value of 0.7, with a
less distinct monotonous increasing trend.

The comparison of accuracy curves across epochs reveals a
common noisy behavior, attributed to the global nature of the
strain degradation curve (Figure 5), which the models attempt
to learn across multiple epochs. The curve exhibits linear seg-
ments due to elasticity features and piece-wise scaled functions
representing nonlinear local responses of the composite material
to external tensile strength.

4.3.2. Univariate Model

The univariate model retains only two columns: the first repre-
senting discretized time (T= 0 to T= 1), and the second contain-
ing strain degradation (SDEG) values. Figure 14 highlights the
importance of the accuracy metric. The learning curves demon-
strate LSTM’s improvement until stabilization after the 200th
epoch at a value of 0.25. Notably, a leap in accuracy occurs from
0.25 to around 0.80. This leap may be attributed to linear evolu-
tion in the validation set for specific nodes, while others exhibit
nonlinear behavior, potentially causing accuracy fluctuations.

The loss function’s classical evolution is depicted in
Figure 14b, where both train and validation curves converge
and reach a minimum value. Table 11 summarizes the metric
values for the three models.

4.3.3. Results Analysis

Interestingly, the LSTM and Bi-LSTM-attention models exhibit
lower error metrics, with LSTM showing an MAE of 0.0016,
MSE of 2.635� 10�6, and RMSE of 0.041, and Bi-LSTM-
attention showing an MAE of 0.0025, MSE of 3.481� 10�6,
and RMSE of 0.050. These lower error values suggest that these
models are effective in minimizing general prediction errors.
However, despite their strong performance in these metrics,
both LSTM and Bi-LSTM-attention struggle to accurately predict
spikes or sudden changes in the strain degradation curve.

This limitation is particularly crucial because accurately cap-
turing these spikes is essential for modeling the non-linear,
abrupt changes often observed in material degradation. The
Bi-LSTM model, although having slightly higher error metrics,
manages to capture these temporal spikes more effectively,
resulting in a higher overall accuracy (0.8199) see Table 11.
This outcome underscores the importance of not only focusing
on error metrics like MAE, MSE, and RMSE but also ensuring
the model’s capability to predict critical events in the data, which
in this case, are the spikes in strain degradation (Figure 15).

4.3.4. Discussions

The multivariate model’s performance indicates that LSTM and
Bi-LSTM models outperform the Bi-LSTM-attention model in
predicting strain degradation. Similarly to ref. [13], our findings
reinforce that recurrent networks, particularly LSTM-based archi-
tectures, are highly effective for solving time-series problems.
These models excel in capturing both linear and nonlinear tem-
poral dependencies, which are critical in accurately modeling the
complex behavior of materials under stress. The noisy behavior
observed in the accuracy curves (see Figure 14) can be attributed
to the inherent complexity of the strain degradation curve, which
involves both linear and nonlinear contributions. Despite the
noise, the Bi-LSTM model showed superior performance, partic-
ularly in scenarios where understanding the temporal sequence
of material degradation is crucial.

Figure 14. Learning curves for the univariate model over 500 epochs. a) Evolution of accuracy for the training and validation sets and b) Variation of the
loss function for the training and validation sets.

Table 11. Table summing up the metrics values for the three DL models
LSTM, Bi-LSTM, and Bi-LSTM with attention layer. The Bi-LSTM model is
showing the best metric’s value.

Models Accuracy MAE MSE RMSE

LSTM 0.61213 0.0016 2.635� 10�6 0.041

Bi-LSTM 0.8199 0.0063 0.0006 0.079

Bi-LSTM-Attention 0.6097 0.0025 3.481� 10�6 0.050
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In the univariate model, the observed leaps in accuracy sug-
gest that the LSTM model effectively learns from the training
dataset. However, challenges arise when predicting the nonlinear
behavior of specific nodes in the validation set. This issue high-
lights a common limitation of LSTM models when applied to
highly nonlinear time-series data, where the model might overfit
to the training data and struggle with generalization. Despite
this, the convergence of the loss function indicates effective
model training, achieving a minimum value that signifies the
model’s capacity to learn the overall trends within the data.
These findings underscore the potential of LSTM models in cap-
turing temporal dependencies and predicting strain degradation,
thereby paving the way for improved simulations in composite
material engineering.

Our results also demonstrate that the Bi-LSTM model signifi-
cantly outperforms traditional ML methods such as RF and EGB
in predicting the temporal evolution of ductile damage. This
advantage is primarily due to the sequential nature of the Bi-
LSTM network, which is inherently well-suited for time-series
data. Understanding the sequence of degradation during tensile
strength is crucial for accurate predictions, and the Bi-LSTM
model’s ability to process information in both directions (past
and future) enhances its predictive accuracy. The model’s perfor-
mance indicates that it can be a reliable tool for forecasting mate-
rial behavior, especially in scenarios where the history of strain
impacts future material states.

The addition of an attention layer to the Bi-LSTMmodel, while
theoretically advantageous, did not result in superior perfor-
mance in our study. The Bi-LSTM-Attention model exhibited
slightly lower accuracy compared to the standard Bi-LSTM,
which raises important considerations regarding the integration
of attention mechanisms in sequence modeling for material
behavior prediction. Although the attention mechanism is
designed to enhance the model’s focus on the most critical parts
of the input sequence, it may have been less effective in this par-
ticular context due to the relatively homogeneous nature of the
strain data or the specific tuning parameters used. This result
suggests that while attention layers can provide benefits,
their effectiveness may depend heavily on the complexity and
heterogeneity of the dataset.

These conclusions are supported by findings in recent litera-
ture. For instance, Mozaffar et al.[57] demonstrated that DL mod-
els, specifically RNNs, could effectively predict path-dependent
plasticity in materials by capturing complex temporal sequences
without relying on traditional plasticity theories, which often
involve iterative solution schemes. Their work highlights the
strength of sequence learning in materials modeling, providing
a strong foundation for the use of Bi-LSTM networks in similar
applications. Mozaffar et al. explored the application of ML to
predict mechanical behavior in composite materials, emphasiz-
ing the need for models that can account for nonlinear,
history-dependent behavior—a challenge that Bi-LSTM models
are well-suited to address.

Integrating physical principles into machine learning models
through approaches like physics-informed neural networks

Figure 15. Graphs representing the prediction results for three different
models: LSTM, Bi-LSTM, Bi-LSTM-attention.

www.advancedsciencenews.com www.entechnol.de

Energy Technol. 2024, 2401045 2401045 (14 of 16) © 2024 Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.entechnol.de


(PINNs), as propose by Cuomo et al.[58] could enhance both
model interpretability and accuracy. PINNs incorporate known
physical laws directly into the training process of the model,
which can help to guide the learning process and ensure that
the model’s predictions are physically plausible. This approach
is particularly beneficial in fields like material science, where
understanding the underlying physical phenomena is crucial
for accurate modeling and prediction. By incorporating such
physical constraints, future models could not only improve pre-
diction accuracy but also provide more interpretable results that
align with established scientific knowledge.

Overall, these results emphasize the considerable potential
of LSTM-based models, particularly Bi-LSTM architectures, in
capturing the temporal dependencies inherent in material
behavior. However, the study also highlights the importance
of continued exploration and refinement of advanced models
and techniques, such as attention mechanisms, transformer
models, and physics-informed approaches, to address the
challenges posed by complex, nonlinear time-series data. These
advancements could pave the way for more accurate and reliable
simulations in composite material engineering and beyond, con-
tributing to better predictive models for a wide range of applica-
tions in engineering and science.

5. Conclusion

The novelty of this research lies in the innovative coupling of
FEM with advanced ML and DL techniques to predict ductile
damage in composite materials used in type IV hydrogen storage
tanks. Unlike traditional approaches that rely solely on experi-
mental or purely computational methods, this study integrates
FEM results with ANNs, specifically utilizing Bi-LSTM networks.
This hybrid methodology not only enhances the accuracy of dam-
age predictions but also significantly reduces the computational
cost and time associated with material degradation studies.
By employing the GMDH for feature selection and leveraging
both classical ML algorithms and sophisticated DL models,
the research provides a robust framework for forecasting the
temporal evolution of strain degradation. This original approach
offers a scalable and efficient tool for optimizing the design and
durability of composite materials in hydrogen storage applica-
tions. Key findings from this research are:

Hybrid modeling approach by coupling FEM with ML/DL
models, particularly the Bi-LSTM network, we achieved a com-
prehensive method for forecasting the degradation of composite
materials. This hybrid approach significantly reduces computa-
tional costs and time compared to traditional experimental
methods.

Feature Selection Using GMDH: the GMDH algorithm
proved to be an effective tool for selecting the most relevant
features from the FEM output, enhancing the predictive
capabilities of the ML/DL models.

Comparison of ML Algorithms: the study compared the
performance of various ML algorithms, including XGBoost,
RF, and Support vector regression (SVR), in predicting strain
degradation. XGBoost emerged as the most promising model,
demonstrating the potential of classical ML methods in forecast-
ing material behavior.

The Bi-LSTM network outperformed other DL models, includ-
ing the standard LSTM and Bi-LSTM with attention layers, in
predicting strain degradation. The Bi-LSTM model achieved
an accuracy of 0.82, highlighting its effectiveness in capturing
the complex temporal dependencies in the degradation data.

The ML/DL models were successful in reproducing both the
elastic and plastic behaviors of the composite materials under
tensile strength, providing valuable insights into the material’s
performance and degradation over time.

The findings demonstrate the scalability of the proposed
hybrid approach for real-world applications, offering a robust
framework for optimizing the design and durability of composite
materials in hydrogen storage vessels.

As a perspective, by using transfer learning of weights on the
last frozen layer it will be possible to use this layer onto real-world
3D composite material to forecast degradation’s temporal evolu-
tion. Fine tuning of the Bi-LSTM model to optimize the param-
eters of learning throughout a pipeline approach seems to be the
next step of improvement. In fact, once the best optimized model
obtained, it will be possible to imagine an ersatz of a combination
of a linear model to mimic the elastic behaviour and a stochastic
continuous model[11,12] like a Poisson law to mimic the plastic
behaviour particularly the pics of strain degradation at nodes.
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