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Abstract. This article attempts answering the following problematic:
How to model and classify energy consumption profiles over a large dis-
tributed territory to optimize the management of buildings’ consump-
tion?
Doing case-by-case in depth auditing of thousands of buildings would re-
quire a massive amount of time and money as well as a significant number
of qualified people. Thus, an automated method must be developed to
establish a relevant and effective recommendations system.
To answer this problematic, pretopology is used to model the sites’ con-
sumption profiles and a multi-criterion hierarchical classification algo-
rithm, using the properties of pretopological space, has been developed
in a Python library.
To evaluate the results, three data sets are used: A generated set of dots
of various sizes in a 2D space, a generated set of time series and a set
of consumption time series of 400 real consumption sites from a French
Energy company.
On the point data set, the algorithm is able to identify the clusters of
points using their position in space and their size as parameter. On the
generated time series, the algorithm is able to identify the time series
clusters using Pearson’s correlation with an Adjusted Rand Index (ARI)
of 1.

Keywords: Artificial intelligence · data analysis · clustering algorithms
· pretopology

1 Introduction

In 2015 was signed the Paris agreement in which government from all over the
world undertook to keep global warming behind a 2◦C increase compared to the
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temperatures of 1990. The year of the Cop21, the worldwide buildings sector
was responsible for 30% of global final energy consumption and nearly 28% of
total direct and indirect CO2 emissions. Yet the energy demand from buildings
and building’s construction still rises, driven by improved access to energy in de-
veloping countries, greater ownership and use of energy-consuming devices and
rapid growth in global buildings floor area, at nearly 3% per year 6. The Interna-
tional Energy Agency’s Reference Technology Scenario (RTS), which accounts
for existing building energy policies and climate-related commitments, shows
that final energy demand in the global buildings sector will increase by 30% by
2060 without more ambitious efforts to address low-carbon and energy-efficient
solutions for buildings and construction. As a result, buildings-related CO2 emis-
sions would increase by another 10% by 2060, adding as much as 415 GtCO2 to
the atmosphere over the next 40 years – the half of the remaining 2◦C carbon
budget and twice what buildings emitted between 1990 and 2016.7 Yet there are
significant opportunities for improvement, as in the United States where 16%
of energy savings could be achieved by reducing performance deficiencies [23].
Energy actors such as Trusted Third-Party for Energy Measurement and Per-
formance can play a role in identifying the most relevant actions to optimize
energy consumption by exploiting the massive energy data now available [6].

There are many ways to decrease buildings’ energy consumption [9]: social
programs, incentive programs, new energies, energy efficiency, dynamic pricing,
demand-response programs. But it is challenging to identify precisely what action
to take.

Furthermore, the energy systems are not necessarily buildings. They can be
a building floor or simply a place inside a building. In consequence, it is more
accurate to talk about sites [6].

The scales of analysis are various both in time (consumption time series are
analyzed on a 24h profile as well as on a yearly profile) and space (the studied
system can go from one room to a group of buildings across a country). Because
of that, there is no universal performance scale on which to compare a site to
another.

Because sites present an important heterogeneity both in intrinsic properties
and geographic situation [22] only a comparison between similar sites might be
meaningful to understand the performance of a new site. By investigating the
works that were effective on a certain site, one can deduce what programs will
probably be efficient for sites of similar nature. Hence, clustering sites based
on their characteristics and consumption will enhance their evaluation and the
recommendations system.

Therefore the topic of our paper is as following: How to cluster a large number
of heterogeneous sites based on their energy consumption profiles to recommend
the most relevant energy optimization solution possible?

In this article, we will consider that the energy consumption profile encom-
passes all the physical characteristics of a site as well as the external factors and

6 http://www.eia.gov/
7 https://www.iea.org/topics/energyefficiency/buildings/
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the consumption data (time series, categorical data and numerical data). The
latter is considered as a time series.

Our goal is to study a group of sites to optimize their consumption thanks
to recommendations done on similar sites. This can be assimilated to portfolio
analysis. Portfolio analysis represents a domain in which a large group of build-
ings, often located in the same geographical area or owned or managed by the
same entity, are analyzed for the purpose of managing or optimizing the group
as a whole [22].

The key contribution of this paper is to provide a clustering method adapted
to portfolio analysis based on a pretopological framework. - new definitions,
properties, and demonstrations - detailed explanations of the algorithms and
their pseudo-codes

Compared to the previous paper [17] this paper gives greater theoretical un-
derstanding of pretopology through added definitions, properties, and demon-
stration. It demonstrates how the pretopological framework used for the algo-
rithms allows for the clustering of any finite set of items. It also explains the algo-
rithms in greater details as well as presenting the pseudo-code of the algorithms.
It also discusses the future work to exploit clustering for energy performance

The paper is structured as follows: the section 2 introduces clustering meth-
ods and some relevant examples on energy systems. The section 3 presents the
pretopology theory and the different types of pretopological spaces. The sec-
tion 4 explains in details the algorithms developped in the python library with
pseudo-code, demonstrating how all finite set of items can be hierarchically clus-
tered. The section 5 presents the clustering of different types of datasets. We
discuss the results and futur work in the section 6 We conclude in the section 7.

2 Literature review

In this section, we present clustering methods and their application on energy
systems. Clustering is a set of unsupervised machine learning methods that group
unlabeled items into clusters. The journal paper of Iglesia et al. in Energies
[12] presents a deeper analysis of clustering in energy system. To consult an
exhaustive list of clustering algorithms, please read Xu et Al. survey [25].

There are four classes of clustering algorithms. Each of them having pros and
cons: density-based clustering, centroid-based clustering, hierarchical clustering,
distribution-based clustering. Let us present each class and their application to
portfolio analysis in energy system.

Centroid-based clustering: In these methods, a cluster is a set of items such that
an item in a cluster is closer to the center of a cluster than to the center of any
other cluster. The center of a cluster is called the centroid, the average of all
points in the cluster, or medoid, the most representative point in a cluster. The
well-known centroid-based algorithm is the K-means algorithm and its exten-
sions. The K-means algorithm is a powerful tool for clustering, but it requires
to determine in advance the number of clusters that the algorithm should find.
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Therefore, centroid-based algorithms are sensitive to initial conditions. Clus-
ters vary in size and density and include outliers (isolated items) from the nearest
cluster. Finally, centroid-based algorithms do not scale with the number of items
and dimensions. In this case, centroid-based algorithms are combined with prin-
cipal component analysis or spectral analysis to be more efficient.

Regarding portfolio analysis in energy systems, Gao et al. [8] compare a
multidimensional energy consumption dataset using a k-means algorithm. Freis-
chhacker et al. [7] design a spatial aggregation method, combined with k-means,
based on block characteristics to reduce reductions due to energy consumption.

Density-based clustering: In density-based clustering, a cluster is a set of features
distributed in the data space over a contiguous region of high feature density.
Elements located in low density regions are generally considered noise or outliers
[13]. The well-known methods in this class are Density-Based Spatial Clustering
of Applications with Noise (DBSCAN ) and its extensions.

Two parameters influence the formation of clusters: density and accessibil-
ity. Therefore, clusters are distinct according to these parameters. The main
strength of this density-based clustering algorithm is it does not require apriori
specification and that it is able to identify noisy data during clustering. It fails
in the case of neck type datasets and does not work well for high dimensionality
data.

Regarding portfolio analysis in energy systems, Li et al. [18] present a density-
based method with particle swarm optimization of building portfolio parameters.
Their method predicts the next day’s electricity consumption through clustering.
Marquant et al. [21] use a density and load-based algorithm to facilitate large-
scale modeling and optimization of urban energy systems.

Hierarchical clustering: Hierarchical clustering is most often a procedure whose
goal is to transform a proximity matrix into a sequence of hierarchically struc-
tured partitions.

The two methods of hierarchical clustering are the bottom-up method (or
agglomeration) or the top-down method (or division). Bottom-up methods start
from disjoint classes and place each of the elements in an independent class. From
the proximity matrix, the procedure searches at each step for the two closest
classes, merges them, then places them in a second partition. The process is
repeated to build a sequence of nested partitions in which the number of classes
decreases as the sequence progresses until a unique class contains all elements.
Top-down methods perform the reverse process.

The key problem of these algorithms is to define the criterion for grouping
or aggregating two classes, i.e. a distance measure. Sites are defined as complex
systems: [1, 5, 6, 10]. They are defined with numerical and categorical data as
well as time series. For this reason calculating a distance between two elements
is challenging and does not allow to use every feature of the site in a relevant way.
Another drawback is the difficulty of identifying a precise number of clusters,
especially in a large data set.
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Regarding portfolio analysis in energy systems, Wang et al. [24] analyze the
spatial disparity of final energy consumption in China through hierarchical clus-
tering and spatial autocorrelation. Li et al. [19] implement a strategy based on
agglomerative hierarchical clustering to identify typical daily electricity usage
patterns.

Distribution-based clustering: Application to large spatial databases requires
from clustering algorithms to have no or minimal input parameters and arbi-
trarily shaped clusters. Distribution-based clustering produces clusters that as-
sume concisely defined mathematical models underlying the items, a relatively
plausible assumption for some item distributions.

Most of the time, the mathematical models are based on the Gaussian, multi-
nomial, or multivariate normal distribution. Clusters are considered fuzzy, which
means that an item can be found in several clusters at a defined percentage.
The best known algorithm is the Expectation-Maximization (EM) clustering
with Gaussian mixture models (GMM). Thus, the GMM algorithm provides two
parameters to describe the shape of the clusters: the mean and the standard
deviation. The main drawback of these algorithms is that they cannot work on
categorical dimensions.

Regarding portfolio analysis in energy systems, Lu et al. [20] use GMM clus-
tering for the identification of heating load patterns. Habib et al. [11] provide
EM clustering to detect outliers in the energy building portfolio.

Conclusion about clustering methods: None of the methods described above can
answer the specificities of the studied system, either because they require the
definition of a distance between the items, or because they cannot return the
hierarchical clustering necessary to apprehend the different scales of a complex
system.

Relevance of pretopology-based clustering: A pretopological space is defined by a
relationship between a set of items and a larger set of items. It is therefore suit-
able for creating a hierarchical structure. It is based on the concept of abstract
space. In such a space, the nature of the element is not relevant, it is rather
the relations and properties linking the elements together that are important.
This allows us to manipulate heterogeneous and complex elements such as our
sites. Therefore, pretopology can be considered as a mathematical tool to model
the concept of proximity for complex systems [2]. Pretopology is therefore the
approach chosen to build our hierarchical clustering.

3 Pretopology

In this section we will explain the key concepts and definition of pretopology,
such as pretopological space and pseudo-closure. We won’t go into detail on the
origins of pretopology but it is important to understand that the concept of
pretopological space is obtained by weakening the hypothesis of the topological
spaces. It allows the modeling of discrete structures unlike topology [2].
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3.1 Pretopological space

Central definitions and propositions

Definition 1. A pseudoclosure function a : ℘(U) → ℘(U) on a set U , is a
function such that:

– a(∅) = ∅
– ∀A | A ⊆ U : A ⊆ a(A)

where ℘(U) is the power set of U

Fig. 1. Example of a pseudoclosure function [14]

Definition 2. A tuple (U, a(.)), where U is a set of elements and a(.) is a pseu-
doclosure function on U , constitutes a pretopological space.

We note that a pretopological space is defined by establishing a relation be-
tween any set of elements and a bigger set. This is interesting in the construction
of a hierarchy. The previous definition determines the most general pretopolog-
ical space. By asking the function to fulfill some additional conditions we get
more specific pretopological spaces:

Definition 3. If ∀ A,B | A ⊆ U , B ⊆ U : A ⊆ B =⇒ a(A) ⊆ a(B), then we
get a pretopological space of type V . This property is called isotony.
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Definition 4. If ∀ A,B | A ⊆ U , B ⊆ U : a(A ∪ B) = a(A) ∪ a(B), then we
get a pretopological space of type VD.

Definition 5. If ∀ A | A ⊆ U : a(A) =
⋃

x∈A a(x) then we get a pretopological
space of type VS.

Given any pretopological space (U, a(.)), we can ask ourselves the question of
what becomes of the concepts of closure classically defined in topology. In fact,
the definition remains the same in pretopology [16].

Definition 6. A part F of U will be a closure of U if and only if a(F ) = F

Proposition 1. In a pretopological space of type V , the intersection of closures
is a closure.

Proposition 2. In a pretopological V − type space, the closure and opening of
any part of U still exists.

Proposition 3. In a pretopological space of type V , the closure of a part A of
U is the smallest closure containing A. Denoted F(A).

Proposition 4. In a pretopological space of type V , every set has a closure. The
proof can be found in [3].

In a pretopological space of type V we can find the closure by repeatedly
applying the pseudoclosure operator to the set and its subsequent images until
it stops expanding. We can see an example of this in figure 2 [14].

If we have a pretopological space of type VD and ∀A | A ⊆ U : a(A) =
a(a(A)), then we get a topology. The pseudoclosure function here is said to be
idempotent [14]. It’s clear that in a finite space, VS = VD [3]. Also, in pretopo-
logical spaces of type VD the pseudoclosure of a set is completely defined by
the pseudoclosures of its singletons. So if the space is also finite, we could draw
an edge from an element to every element of its pseudoclosure, and the pseudo-
closure would be equivalent to a particular graph. Figure 3 shows the relation
between the two. This demonstrates that pretopology is also a generalization of
graph theory [14].

There is a second way of characterizing pretopologies of type V and VD . To
understand it we need to give a few more definitions first:

Definition 7. We say that a set F of ℘(℘(U)) is a prefilter over U , if:

∀F ∈ F ,∀H ∈ ℘(U), F ⊂ H =⇒ H ∈ F (1)

Definition 8. We say that a set F of ℘(℘(U)) is a filter over U , if it is a
prefilter stable under finite intersection, i.e.

∀F ∈ F ,∀G ∈ F , F ∩G ∈ F (2)
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Fig. 2. Closure of set A [14]

In other words, and restricting ourselves to a finite space, a filter is the family
of all supersets of a set B, while a prefilter is the family of supersets of every
member Bi of a family of sets B. The family of sets B is called the basis of the
prefilter. We can see in figure 4 an example of a filter and a prefilter with basis
B = 1, 4, 2, 4 [14].

Now, if we have a set U , and for every x ∈ U we have a prefilter V (x) such
that every member of V (x) contains the element x, we can define a pseudoclosure
function in the following way:

∀A ⊆ U, a(A) = {x ∈ U |∀V ∈ V (x), V ∩A, ∅} (3)

We call the prefilter V (x) the family of neighborhoods of x, and each set in
the family is called a neighborhood of x. Figure 5 shows a graphical represen-
tation of this definition of the pseudoclosure. On the other hand, if we have a
pseudoclosure function a(.) in a pretopological space of type V , the family of
sets given by:

V (x) = {V ⊂ U |x ∈ i(V )} (4)

where i(A) = a(Ac)c, is a prefilter. The following proposition shows that we can
go from one definition to the other interchangeably [3]:

Proposition 5. No two families of prefilters {V (xi)|xi ∈ U} define the same
pseudoclosure function a(.), and no two pseudoclosure functions define the same
family of prefilters {V (xi)|xi ∈ U}.
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Fig. 3. Pseudoclosure function on a graph [14]

4 Hierarchical Clustering Algorithms

This section describes the algorithms developped in a Python library used for
the construction of a closure and to build a hierarchical clustering of sites. This
algorithm, whose pseudo-code is given in the source code 1, is organized in four
phases:

– Determine a family of elementary subsets called seeds.

– Construct the closures of the seeds by iterative application of the pseudoclo-
sure function.

– Construct the adjacency matrix representing the relations between all the
identified subsets (even the intermediate ones).

– Establish the quasi-hierarchy by applying the associated algorithm on the
adjacency matrix.

Several methods are possible to determine the seeds. Therefore, the algorithm
is influenced by the following two hyperparameters:

– the seedFunc(.) function which determines, for an element, a set of close
elements which will constitute a seed,

– the degree d to specify the size of the seeds.
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Fig. 4. Filters vs Prefilters [14]

Fig. 5. Neighborhood definition of a pretopology [14]

The algorithm takes an additional hyperparameter, required by the Extrac-
tQuasihierarchy algorithm in order to establish the quasi-hierarchy: thqh, which
corresponds to the threshold beyond which it is estimated that two elements are
close. This number is generally between 0 and 1.

We now detail each phase of the algorithm.

Calculation of a family of elementary sets or seeds The aim here is to determine
elementary subsets of size d called seeds thanks to the function seedFunc(.)
whose role is to find the d needed neighbors. To do so, we iterate on all the
points of the set U associated to the pretopological space p. The pseudo-code of
the resulting algorithm (named ElementaryQuasiclosures) is presented in the
source code 2.

The algorithm 2 uses the function FindNeighbors whose peudo-code is given
in the source code 3. The latter takes as parameters an element of U , the num-
ber of neighbors sought d and the function determining the nearest neighbors
seedFunc(.). The seedFunc(.) function usually takes as its value one of the
following two functions:
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Algorithm 1 QuasistructuralAnalysis: Algorithm for the analysis of the
quasi-hierarchy of a pretopological space, based on the work of [14]

Require: ((U, a(.)), d, seedFunc(.), thqh)
Ensure: QFqh, quasiHierarchy

seedList← ElementaryQuasiclosures((U, a), d, seedFunc)
QFe ← ElementaryClosedSubsets((U, a), seedList)
Adjqh ← ExtractAdjencyQuasihierarchy(QFe)
QFqh, quasiHierarchy ← ExtractQuasihierarchy(QFe, Adjqh, thqh)

Algorithm 2 ElementaryQuasiclosures: Construction of the seeds by apply-
ing the function seedFunc(.) on all the elements of the set U , based on the work
of [14]

Require: ((U, a(.)), degree, seedFunc(.))
Ensure: seedList

seedList← list()
for all x ∈ U do

seedList← list()
seedList.append(seed)

end for

Algorithm 3 FindNeighbors: Determine the d neighbors of firstNode using
the seedFunc(.) function, based on the work of [14]

Require: (firstNode, d, seedFunc(.))
Ensure: path

path← list()
lastTreatedNode← firstNode
for all i ∈ range(d) do

newNode← seedFunc(lastTreatedNode)
path.append(newNode)
lastTreatedNode← newNode

end for
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– ClosestNode(node) which identifies the closest nodes to an element. It is
used in cases where a distance can be calculated, for example in the case
where the studied relations are quantifiable.

– RandomNeighbor(node) randomly browses the neighboring nodes. Its use
is preferred when the relations are not quantifiable, for example in the case
of values describing categories.

Construction of subsets by applying pseudoclosure To construct the subsets that
will then be organized by the pseudo-hierarchy algorithm, ElementaryClosed-
Subsets uses the seed list seedList computed previously by ElementaryQuasi-
closures. For each of the seeds in seedList, the membership function is applied
iteratively until the pseudo-closure no longer gives bigger sets.

The intermediate and final subsets are stored in a list of unique element lists
(list of set) named QFtmp so that we don’t have to reapply the membership
later on the same sets. QFtmp indexes the subsets according to the number of
elements they contain. Since the membership of a set is always greater than or
equal to its size, such indexing ensures that all elements are processed once and
only once.

The list QFe, constructed from the lists in QFtmp, is then returned. The
associated pseudo-code is presented in the source code 4.

Algorithm 4 ElementaryClosedSubsets: Computes the set of subsets by
iterative application of the pseudo-closure function, algorithm inspired from [14]

Require: ((U, a(.)), seedList)
Ensure: QFe

QFtmp a list of Size(U) sets
for all seed ∈ seedList do

QFtmp[Size(seed)].append(seed)
end for
for all i ∈ range(1, Size(U) + 1) do

for all s ∈ QFtmp[i] do
pseudoclosure← a(s)
if lastTreatedNode← newNode then

QFtmp[Size(pseudoclosure)].append(pseudoclosure)
end if

end for
end for
QFe ← list()
for all i ∈ range(Size(QFtmp)) do

QFe.extend(QFtmp[i])
end for

Construction of the adjacency matrix The objective of this algorithm is to
establish the hierarchical relations between the graphs of QFe identified by
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ElementaryClosedSubsets. These relationships, between all QFe sets, are rep-
resented as an adjacency matrix Adjqh.

In a space of type V , two distinct closed elementary subsets Fx and Fy of
QFe :

– are either disjoint then Fx ∩ Fy = ∅,
– either contain a nonzero intersection such that ∀; z ∈ Fx ∩Fy, Fz ⊂ Fx ∩Fy,

where Fz is the closure of z.

Thus, if two subsets Fx and Fy overlap without one of them being contained
in the other (Fx ∩ Fy 6= ∅, Fx 6⊂ Fy and Fy 6⊂ Fx), we know that a smaller set
Fz contained in Fx ∩ Fy exists. The resulting hierarchical graph must therefore
connect Fx and Fy as parents of Fz.

However, as we mentioned, the Laborde’s algorithm [14] is intended to be
applicable to non-V spaces as well. In such pretopological spaces, there is no
guarantee that an element of Fx ∩ Fy will not grow beyond this intersection.
This is illustrated in Figure 6. Furthermore, in the case of d−n elementary sets,
where n is the cardinality of U and d is the degree applied for creating the seeds,
it is possible that none of the seeds are contained in the intersection. Thus, it is
possible that no obvious structure emerges from the collection of quasi-closures.

To solve this problem, Laborde et Al. [14] generalizes the type of hierarchy
constructed from quasi-closures so as to satisfy the following constraints:

– Two subsets should be connected only if their intersection is nonzero (Fx ∩
Fy),

– The larger the cardinality of the intersection Fx ∩Fy is compared to that of
Fx, the stronger the relation of Fx to Fy is,

– The larger the cardinality of the subset Fy compared to that of Fx, the less
necessary it is that Fx ∩ Fy is large for the relation from Fx to Fy to be
strong. In other words, a very large set will attract smaller sets even if their
intersection is not very large.

The algorithm presented in the source code 5 implements this logic. It quan-
tifies the relations between each pair of QFe whose intersection is not empty and
then returns the resulting matrix.

Construction of the quasi-hierarchy The quasi-hierarchy is built from the ad-
jacency matrix by checking if the relations computed by ExtractAdjencyQuasi-
hierarchy exceed the threshold thqh. The new adjacency matrix thus obtained
defines the quasihierarchy returned by the algorithm. The algorithm also re-
turns the final list QFqh of identified subsets for the set U . QFqh corresponds to
the list QFe updated following the potential addition of new subsets during the
construction of the quasi-hierarchy.

The quasi-hierarchy is established by applying the following rules on the
values of Adjqh:

– A link between two subsets is established in the quasi-hierarchy if their
relationship exceeds the threshold thqh,



14 L-N. Lévy et al.

Fig. 6. Construction of a quasi-hierarchy in a pretopological space of type V , according
to the method of [15], and of type non-V , according to the method of [14], figures by
this later author

– Two subsets that have strong mutual relations (exceeding the threshold thqh)
are considered equivalent. They are subject to a subsidiary treatment im-
proving the resulting quasi-hierarchy.

– The resulting quasiclosures with the respective links determine the quasi-
hierarchy.

Laborde et Al. [14] treats the case of equivalent sets by keeping the largest
set and deleting the other. If the sets are of the same size then one of them is
chosen randomly.

5 Model validation and visualization of results

Validation tool: To evaluate the pretopological hierarchical clustering, we also
provide a set of tools to validate the model and show the results.

This program is developed to create a point dataset with the following pa-
rameters:

- the number of groups of dense items;
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Algorithm 5 ExtractAdjencyQuasihierarchy: Construction of the adja-
cency matrix for the quasi-hierarchy, algorithm inspired from [14]

Require: (QFe)
Ensure: Adjqh

Adjqh ← SquaredMatrixZeros(size(QFe))
for all F, G ∈ QFe do

FhasG← Size(F ∩G)/Size(G)
GhasF ← Size(F ∩G)/Size(F )
FbiggerG← Size(F )/Size(G)
GbiggerF ← Size(G)/Size(F )
Adjqh[Index(G), Index(F )] = GbiggerF ∗GhasF
Adjqh[Index(F ), Index(G)] = FbiggerG ∗ FhasG

end for

- the number of items of each group;
- the spatial dispersion of each group;
- the position of each group.

The size of an item is added as a second parameter, to evaluate multi-criteria
clustering. Groups with different item size can be produced with the following
parameters:

- the number of groups;
- the number of items of each group;
- the range of sizes of each group.

This program allows us to evaluate our method in different types of situations
and to easily make adjustments or corrections.

Fig. 7. The four clusters determined by our algorithm using both size and position as
parameters, on a 2D disks dataset [17].

Visualization tool: The program colors each of the largest sets determined by
our algorithm with a single color to make the clusters apparent. The validation
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tool is tested with two groups of large and small elements and a two-dimensional
position. The elements are shown in figure 7. In this example, four clusters were
determined: blue, green, orange and red. The black dot at the far left of the figure
7 is an element identified as an outlier by the algorithms. For example, the red
and orange elements are close to each other but separated into two clusters due
to their different sizes, and the orange and green dots are similar in size but
divided into two sets due to their different positions.

The program also displays the hierarchical classification consisting of the
seeds, intermediate sets and final clusters. The hierarchical classification is dis-
played as a tree in which each set is identified by a number and is represented
by a node.

Fig. 8. A tree representing the pseudohierarchy relation between each intermediate set
from the seed to the cluster [17].

For example, the hierarchy shown in Figure 8 shows the relationships between
the sets determined by our algorithm applied to the dataset displayed in Figure
7. Only the sets with more than two elements are shown on this tree. We can
recognize the four clusters that have been colored on figure 7, they are labeled
20, 21, 22 and 23. Figure 9 displays cluster 14 which is a child of cluster 21
(colored in green) in the hierarchical clustering. This hierarchy identifies large
clusters of relatively similar items and provides more detail about small clusters
of very similar items.
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Fig. 9. The subset 14 in red representing a subgroup of the green clusters (subset 22)
in figure 7 [17].

5.1 Results on different datasets

5.2 Benchmark dataset

Since the main data we have from the sites are time series of power consumption,
we needed to test, visualize, and evaluate the clustering of a time series set.
This section presents this test set and the results of our algorithm. The test set
created, consisting of six clusters, is shown in Figure 10. Each cluster is composed
of 30 time series of 60 points.

The similarity measure used to establish the value between two items is
the Pearson’s coefficient. The Pearson correlation coefficient measures the linear
relationship between each pair of items, which in this case are time series.

Our program colored the time series based on the clusters it had identified
(see figure 10).

5.3 Results analysis on benchmark dataset

The program identified exactly the same clusters as the ground truth given by the
benchmark. To evaluate the validity of the clusters determined by the algorithm,
our metric is the Adjusted Rand score, also called Adjusted Rand Index (ARI).
As we have perfectly identified the clusters, the ARI of our clustering is 1. Figure
11 shows the confusion matrix between the cluster found by our method and the
ground truth given by the benchmark.

Further experiments will be conducted in a future contribution.

5.4 Real dataset

This dataset is built from Enedis (the French electricity network manager) con-
sumption time series for 400 sites over one year. It is resampled with a time
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Fig. 10. The clusters identified by our algorithm [17].

step of half an hour, a day, a week and a month. The proximity between Enedis
delivery points is evaluated on each resampled time series, each resampled time
series corresponding to a characteristic of a site. After the Enedis dataset is
constructed, the algorithm described in section 3 is applied on the time series.

5.5 Result Analysis on real dataset

Figure 12, displays the grouping of 50 Enedis time series representing all the
clusters. Three clusters have been identified, in the green cluster there are two
peaks per day, one in the morning, one in the evening, in the red clusters there
is a single peak per day that lasts half the day, and in the blue cluster the
consumption is constant during the day.

The algorithm identified relevant clusters in the sense that each items shares
a characteristic with items in its cluster that it does not share with items in a
different cluster.

6 Discussion and future work

The results we have shown on a real dataset are preliminary. To fully exhibit
the potential of this algorithm, the clustering will have to be applied to a richer
data set. This data set should include relevant features extracted from the con-
sumption time series as well as physical characteristics of the buildings (such as
the site’s floor area, the type of heating, the insulation material, etc.). Correla-
tion between the sites consumption and meteorological environment will also be
a feature used for future works. By taking all these elements into account, the
relevance of the clusters identified will be greatly improved.

There are two possibilities regarding the identified building clusters:
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Fig. 11. Confusion matrix of the clusterization [17].

– The clusters correspond to an already defined classification i.e. the clus-
ters can be compared to ground truth. For example, the clusters identified
might correspond to the usage of the sites. In this case, we will implement
semi-supervised learning and by using Machine Learning to tune the hyper-
parameters of the algorithm we will optimize the ARI index of our clustering.

– The clusters do not correspond to any known classification of buildings. In
that case, we will have to apply knowledge extraction methods as well as
energy experts’ insight to give meaning to the newly found taxonomy of
buildings.

Because the energy performance key indicators are not the same depending
on the type of building [4], the insight given on building types will enhance
energy performance evaluation and recommendation.

7 Conclusion

Building energy performance is a major challenge of the 21st century because
of its important impact on climate change. Allowed by the growth of energy
data, clustering of building based on consumption profile is a promising solution
to efficiently identify the most relevant action to take for such complex energy
systems. After a presentation of the state of art of the clustering methods, we
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Fig. 12. Clustering of the Enedis time series [17]

propose a novel approach based on pretopology. The presented framework using
pretopology allows for the multi-criteria hierarchical clustering of any finite set
of items. Having a hierarchical structure gives insight into the similarities be-
tween building at different scales and therefore should provides a more refined
understanding of the families and subfamilies of consumption profiles. The algo-
rithm developed in Python for the construction of a Hierarchical Clustering of
sites exploits this framework. The validation and visualization tools developed
to test our algorithm allowed us to demonstrate visually and through ARI the
relevance of the method on generated datasets as well as on real consumption
time series dataset. The results demonstrate the potential of this solution for
hierarchical clustering of heterogeneous systems.
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