
Deliverables in Scientific & Engineering
Projects
Introduction: A Practical Guide to Project Deliverables

In any technical project, a deliverable is the tangible, verifiable proof of your work. It’s the unit
of progress that turns abstract goals into concrete assets. A deliverable can be a curated
dataset, a piece of commented analysis code, a set of CAD drawings for manufacturing, a
validated software component, or a final technical report. These are the building blocks of
engineering and scientific achievement.

This guide is structured to follow the natural lifecycle of a project, from initial concept to final
release. Instead of just defining a list of documents, we will walk through the key deliverables
you will create at each stage:

●​ Part 1: Project Initiation & Planning: Laying the foundation for success.
●​ Part 2: Execution & Development: Building the core technical assets.
●​ Part 3: Validation & Deployment: Proving that your solution works.
●​ Part 4: Dissemination & Archiving: Sharing your work and ensuring its longevity.

By the end, you will have a clear framework for defining, creating, and managing the outputs
that give your work credibility, impact, and a life beyond a single project.

Why a Deliverable-Driven Workflow is Essential

Adopting this workflow is the most effective way to ensure your project stays on track and
produces high-quality, reliable results.

●​ It Makes Your Progress Defensible. For your manager, client, or funding agency, a
completed deliverable (like a validated test report or a functioning prototype) is
undeniable proof of progress. It provides the concrete evidence needed to justify the
continued investment of time and resources.

●​ It Prevents Wasted Effort. Defining your deliverables at the start of a work phase forces
clarity. When everyone on the team agrees that the goal is to produce "a firmware
module that meets X performance criteria" or "a Python script that outputs Y format," you
eliminate the ambiguity that leads to miscommunication and rework. A clear deliverable
defines what "done" looks like.

●​ It Builds a Reliable Foundation. In both engineering and science, your most important
collaborator is your future self. A well-documented deliverable—a curated dataset, a
version-controlled software library, or a standard operating procedure (SOP)—is a
reliable asset. It concludes the current phase of work and serves as a trusted, reusable
foundation for the next stage of innovation.

The Reality: Your Deliverables are Living Artifacts

Technical work is never linear. A simulation model is constantly refined, a design specification
evolves with new requirements, and an analysis script is updated as you learn more. Your
deliverables are not static files but "living" artifacts that will change.

This is why version control is not optional.

Treating your deliverables as living artifacts means managing them with professional tools. For
any code, scripts, specifications, or documentation, this means using a version control system
like Git. For large datasets or compiled binaries, it means using a formal artifact repository. A
deliverable without a clear version history is an incomplete deliverable. It lacks the context and
traceability required for modern, high-integrity technical projects.

Part 1: Project Initiation & Planning

This is the most critical phase for any technical project. The deliverables produced here are not
physical prototypes or final datasets; they are the foundational documents that define what you
will build, why it's important, and how you will measure success. Skipping this step is the single
most common reason that well-intentioned projects go over budget, miss deadlines, or fail to
meet their goals.

These initial deliverables serve one primary purpose: to force clarity and create alignment
among all stakeholders before significant time and resources are committed.

1.1 From Idea to Action Plan: The Project Charter

Whether it's called a Grant Proposal in a research setting or a Project Charter in an industrial
one, this document is the project's official birth certificate. It translates a high-level idea into a
formal, authorized plan. Its job is to secure the buy-in and resources needed to proceed.

The Why: Without a charter, your project is just an idea. This document makes it real and
ensures everyone—from the team lead to the funding agency—agrees on the project's purpose
and its boundaries.

The How-To: A strong charter doesn't need to be long, but it must answer these key questions.
Use this as a checklist:

●​ Problem Statement: What specific problem are you trying to solve? (e.g., "Existing data
processing pipelines are too slow, taking 12 hours to run.")

●​ Project Objectives (SMART Goals): What are the specific, measurable, achievable,
relevant, and time-bound goals? (e.g., "Develop and deploy a new data pipeline by Q3
that reduces processing time to under 1 hour.")

●​ Scope: What is explicitly in-scope and, just as importantly, out-of-scope? (e.g., In-scope:
"Process A, B, and C." Out-of-scope: "Building a new user interface for the results.")

●​ Key Stakeholders: Who is the project sponsor, who are the end-users, and who needs
to be kept informed?

●​ High-Level Timeline & Milestones: What are the major phases and target completion
dates?

●​ Budget & Resource Summary: What is the estimated cost and what
personnel/equipment are needed?

Tooling: Draft this collaboratively using tools like Google Docs, Microsoft 365, or a dedicated
page in a team wiki like Confluence. The key is shared access and the ability to comment and
iterate until all stakeholders approve it.

1.2 Defining the Scope: The WBS and Risk Register

Once the charter is approved, you must break down the high-level plan into manageable pieces.

The Work Breakdown Structure (WBS) is a hierarchical decomposition of the total work. It's
the master "to-do" list for the entire project.

●​ The Why: The WBS provides a complete picture of the work required, preventing tasks
from being overlooked. It is the foundation for all detailed scheduling, resource
allocation, and progress tracking.

●​ The How-To: Start with the major milestones from your charter and break them down
into smaller "work packages." Each work package should have a clear owner and
produce one or more specific deliverables.

○​ Level 1: Project Name (e.g., Environmental Sensor Development)
○​ Level 2: Major Phases (e.g., WP1: Sensor Design, WP2: Firmware Dev, WP3:

Prototype Assembly)
○​ Level 3: Deliverables/Tasks (e.g., Under WP1: 1.1 Requirements Doc, 1.2 CAD

Drawings, 1.3 Final Design Review)
●​ Tooling: Use a mind-mapping tool like Miro or XMind for initial brainstorming. Then,

formalize the WBS in a spreadsheet or a project management tool like Jira, Asana, or
Trello, where each work package can become an "epic" or a "board."

The Risk Register is a living document that identifies potential threats to your project before
they happen.

●​ The Why: Proactively identifying risks allows you to plan mitigation strategies instead of
reacting to crises. This practice dramatically increases the likelihood of delivering on time
and on budget.

●​ The How-To: Create a simple table with the following columns. Review it regularly in
team meetings.

1.​ Risk ID: A unique identifier.
2.​ Description: A clear statement of the potential problem (e.g., "Key sensor

component has a 12-week lead time").
3.​ Likelihood: High / Medium / Low.
4.​ Impact: High / Medium / Low.
5.​ Mitigation Plan: The specific action you will take to reduce the risk (e.g.,

"Identify and validate an alternative supplier by [date]").
6.​ Owner: The person responsible for executing the plan.

●​ Tooling: A shared Excel or Google Sheet is often sufficient. For larger projects, Jira
and other PM tools have built-in risk management modules.

1.3 Planning for Data: The Data Management Plan (DMP)

In any modern technical project, data is a first-class deliverable. The DMP is a formal document
that outlines how you will handle data throughout the project's lifecycle and beyond. Many
funding agencies now require one.

The Why: A DMP forces you to treat your data with the same discipline as your hardware or
software. It prevents data loss, ensures you meet funder requirements for sharing, and makes
your results more reproducible and valuable to the community.

The How-To: Your DMP must address these core questions:

●​ Data Generation: What types of data (e.g., simulation output, experimental
measurements, code) will you generate, and in what formats (e.g., CSV, HDF5, .py
scripts)?

●​ Documentation & Metadata: How will you describe the data so that someone else (or
your future self) can understand it? What information is needed to interpret a file (e.g.,
column headers, units, experimental conditions)?

●​ Storage & Backup: Where will the data be stored during the project to ensure it is
secure and regularly backed up? What is your backup strategy?

●​ Access & Sharing Policies: Who on the team can access the data? Will you share it
publicly? If so, when and under what license?

●​ Long-Term Preservation: After the project ends, where will the data be archived to
ensure it remains accessible for the long term?

Tooling: Use resources like DMPTool to generate a template based on your specific funding
agency's requirements. Plan your storage infrastructure early—whether it's an institutional
server, a cloud service like AWS S3, or a public repository like Zenodo for final archiving.

1.4 Setting Technical Goals: The Requirements Document

This deliverable translates the high-level project objectives from the charter into a detailed,
technical "definition of done." It is the blueprint for the engineering and development teams.

The Why: A clear set of requirements is your primary defense against "scope creep"—the
tendency for a project to grow beyond its original objectives. It provides an objective, verifiable
checklist to determine if the work is complete and successful.

The How-To: Good requirements are unambiguous and testable. Separate them into two
categories:

●​ Functional Requirements: What the system must do.
○​ Example: "The software shall be able to import CSV files up to 100 MB."
○​ User Story Format: "As an analyst, I need to import CSV files so that I can

process my experimental data."

●​ Non-Functional Requirements: How the system must perform. These define qualities
like performance, reliability, and security.

○​ Example: "The data import process must complete in under 5 seconds."
○​ Example: "The system must be accessible only to authenticated users."

Tooling: For complex systems, use an issue tracker like Jira to log each requirement as a
trackable item that can be linked to specific tasks and tests. For simpler projects, a
well-structured document in Confluence or a version-controlled Markdown file in a Git
repository is an excellent practice.

Part 2: Execution & Development

This is the "building" phase where the plans from Part 1 are transformed into tangible technical
assets. The focus shifts from planning documents to the creation of the core intellectual property
of the project: the designs, the code, the procedures, and the data.

Effective management of deliverables in this phase is what separates a chaotic, one-off effort
from a professional, reproducible project. The goal is not just to create something that works,
but to create assets that are well-documented, reliable, and can be built upon in the future.

2.1 Designing the Solution: The Technical Blueprints

Before you write a single line of code or machine a single part, you must translate the "what"
from the Requirements Document into a detailed "how." These design deliverables are the
blueprints that guide all subsequent development work.

●​ Technical Specifications & Design Documents: This document details the proposed
implementation. It describes the system architecture, component choices, algorithms,
data structures, and interfaces.​

○​ The Why: It forces you to think through the entire solution before committing to
development, catching design flaws when they are cheap to fix (on paper) rather
than expensive (in code or hardware). It becomes the primary reference for the
development team.

○​ The How-To: A good design doc includes block diagrams showing how
components interact, data flow diagrams, and a clear rationale for key technical
decisions. Crucially, it should trace every design element back to a specific
requirement from the Part 1 document, ensuring you are building what was
agreed upon.

○​ Tooling: Use wiki software like Confluence for collaborative design, or create
diagrams using tools like draw.io (Diagrams.net) or Lucidchart. For formal
documents, a version-controlled Markdown file in a Git repository is an excellent
practice.

●​ CAD Drawings & Schematics: These are the indispensable deliverables for any project
involving physical hardware.​

○​ The Why: They provide the precise, unambiguous instructions needed for
manufacturing, assembly, and testing. A well-made drawing or schematic
eliminates guesswork and ensures every component is built and connected
correctly.

○​ CAD (Computer-Aided Design) Drawings: Provide scaled 2D or 3D
representations of a physical part or assembly. They are the language of
manufacturing.

○​ Schematics: Illustrate the functional connections between components in a
system (e.g., electrical, hydraulic), prioritizing logical relationships over physical
layout.

○​ Tooling: Standard engineering tools include SolidWorks, AutoCAD, and
Fusion 360 for CAD, and KiCad or Altium Designer for electronic schematics.
Always include version numbers and a revision history directly on the drawing.

2.2 Building the Asset: Code as a Deliverable

In modern technical projects, the source code is often the single most valuable asset. It must be
treated with the same rigor as a physical prototype. The act of writing code is the act of creating
a deliverable.

The Why: Well-written, version-controlled code is reproducible, extensible, and verifiable. It
embodies the logic and intelligence of your project in a way that can be shared, audited, and
improved upon by others.

The How-To: The Non-Negotiable Standard is Version Control

Every line of code, every script, and every configuration file must be managed in a Version
Control System (VCS). Git is the industry standard.

●​ Your Workflow:
1.​ Initialize a Repository: Start every project, no matter how small, with git

init. Use a hosting service like GitHub or GitLab to back up and manage your
work.

2.​ Commit Often: Make small, logical commits with clear messages (e.g., "feat:
Add CSV parsing function"). This creates a detailed, understandable history of
your project.

3.​ Use Branches: Create branches for new features or experiments (git
checkout -b new-feature). This isolates your work and keeps the main
branch stable.

Types of Code Deliverables:

●​ Analysis Scripts (Python, R, MATLAB): These scripts process data and generate
results. The script itself is as important as the plots it produces. For reproducibility, it
must be possible for someone else to run your script on your data and get the exact
same result. Comment your code clearly, explaining the "why" behind your analysis
steps.

●​ Simulation Models & Code: This is the source code that models a physical
phenomenon. It represents a primary intellectual output of the project. Your deliverable
should include not just the code, but also a README.md file explaining how to compile
and run it, along with example input files.

●​ Firmware / Embedded Software: This is the specialized software that runs on
hardware. Reliability is paramount. The deliverable is the final, stable, and tested source
code, along with a compiled binary that can be loaded onto the device.

2.3 Ensuring Quality & Reproducibility: SOPs

A project's quality is determined by its processes. Standard Operating Procedures (SOPs) are
deliverables designed to make those processes consistent and reliable.

The Why: SOPs are the recipe book for your project. They ensure that critical tasks—from
running an experiment to deploying software—are performed the same way every time, by
everyone on the team. This reduces errors, improves safety and quality, and is essential for
regulatory compliance in many fields.

The How-To: An SOP is a simple, step-by-step set of instructions. It should be written with
absolute clarity, leaving no room for interpretation.

●​ Structure of a Good SOP:
1.​ Purpose: What is this procedure for?
2.​ Scope: When does this procedure apply?
3.​ Responsibilities: Who is authorized to perform this task?
4.​ Materials/Equipment: What is needed?
5.​ Procedure: A numbered, step-by-step list of actions.
6.​ Quality Checks: How do you verify the procedure was successful?

●​ Tooling: Store SOPs where they are easily accessible to the team—a shared wiki like
Confluence or a folder in a version-controlled repository are ideal. Like all other living
documents, they should have a version history.

2.4 Managing the Data: The Curated Dataset

Raw data from an instrument or simulation is rarely usable. The process of transforming that
raw data into a clean, organized, and understandable format produces one of the most valuable
deliverables of any project: a Cleaned and Curated Dataset.

The Why: A curated dataset is a high-value scientific or engineering asset. It saves countless
hours of work for your future self and for others who may use your data. This deliverable is often
more impactful and has a longer life than the publications that result from it.

The How-To: This process should be guided by the Data Management Plan (DMP) you created
in Part 1.

1.​ Script the Cleaning: Never clean data manually in a spreadsheet. Write a script (e.g.,
using Python with Pandas or R) to perform all cleaning, filtering, and normalization
steps.

2.​ Document Everything: The cleaning script itself is the primary documentation. Add
comments to explain why certain values were removed or transformed.

3.​ Create a Data Dictionary: Produce a README.md or a separate file that describes the
curated dataset. For a tabular file, it should explain each column header, the units of
measurement, and how any special values (e.g., NaN) are encoded.

4.​ Use Sensible Formats: Save your final, clean dataset in a non-proprietary format like
CSV, HDF5, or Parquet.

By treating the cleaning process as a formal development task, you create a final data asset
that is transparent, reproducible, and ready for analysis.

Part 3: Validation & Deployment

This is the "proving" phase. The deliverables created here provide objective evidence that the
assets built in Part 2 meet the goals defined in Part 1. This stage is the critical bridge between a
project that works on a developer's machine and a solution that is reliable, trusted, and ready for
real-world use.

The goal of this phase is to answer one question with verifiable proof: "Does it work as
intended?"

3.1 Verification and Validation: The Test Report

A Test Report is the formal deliverable that documents the results of all testing activities. It is the
objective evidence that your system performs as specified.

The Why: This document builds confidence and manages risk. For project stakeholders, it
proves that the system meets the agreed-upon requirements. For the technical team, it provides

a final, systematic quality check before release. Without a formal testing process, you are not
engineering; you are guessing.

The How-To: A good Test Report is a summary of a structured testing process. It should directly
trace back to the Requirements Document from Part 1.

●​ Structure your testing:​

○​ Unit Tests: Code-level tests that verify individual functions or components work
in isolation.

○​ Integration Tests: Tests that ensure different components work correctly
together.

○​ System Tests: End-to-end tests performed on the complete, integrated system
to validate it against the original requirements.

●​ Create a Traceability Matrix: The core of the report is a simple table that connects each
requirement to a test case.​

Requirement
ID

Requirement
Description

Test
Case ID

Test Result
(Pass/Fail)

Notes / Bug ID

REQ-001 System must import
CSV files up to 100MB.

TEST-01
2

Pass

REQ-002 Import must complete in
< 5 seconds.

TEST-01
3

Fail See BUG-45.
Average time is
8.2s.

●​ ​
Summarize the Findings: Include a high-level summary of the testing scope, the overall
pass/fail rates, and a list of any critical, unresolved bugs.​

Tooling: Use a testing framework like pytest (for Python) or JUnit (for Java) to automate unit
and integration tests. Log and track bugs discovered during testing using an issue tracker like
Jira or GitHub Issues. The final report can be a formal document or a summary page in your
project's Confluence or wiki.

3.2 Preparing for Handoff: The Deployment Guide

A solution that only one person knows how to run is a liability, not an asset. The Deployment
Guide (or Installation Manual) is the key that unlocks your work for others.

The Why: This deliverable ensures that your software or system can be successfully installed,
configured, and run in a new environment without relying on the original developer. It is
essential for collaboration, long-term maintenance, and enabling others to use and build upon
your work.

The How-To: The Gold Standard is a README.md and a Dockerfile

Your deployment instructions must be clear, complete, and unambiguous.

●​ A README.md for manual setup: Include this file at the root of your code repository.
1.​ Prerequisites: A checklist of all required software, libraries, and hardware (e.g.,

"Python 3.9+, NVIDIA GPU with CUDA 11.2").
2.​ Installation: A step-by-step list of commands to run (e.g., pip install -r

requirements.txt).
3.​ Configuration: Clear instructions for setting any necessary configuration

variables (e.g., "Copy .env.example to .env and add your API key").
4.​ Execution: The exact command to run the software.
5.​ Verification: A simple "smoke test" the user can run to confirm the installation

was successful (e.g., "Run python -m app.test and expect to see 'All tests
passed'").

●​ A Dockerfile for automated setup: For complex applications, a Docker container is
the ultimate deployment guide. The Dockerfile is a script that builds a self-contained,
runnable image of your application with all its dependencies, eliminating "it works on my
machine" problems entirely.

Tooling: Git for versioning your README.md and Dockerfile. Docker for containerization.
For very complex enterprise systems, configuration management tools like Ansible or
Terraform are used.

3.3 Packaging the Final Output: Self-Contained Technical Assets

The final technical outputs of your project are high-value assets. They must be packaged in a
way that makes them self-contained, understandable, and ready for use.

●​ Trained Machine Learning Models:​

○​ The Why: A raw model file (like a .pkl) is incomplete. To be useful, it needs its
software environment, performance metadata, and usage instructions. Proper
packaging turns a research artifact into a reusable engineering component.

○​ The How-To: A complete ML model package includes:
1.​ The Model File: The serialized, trained model (e.g., model.onnx,

final_model.h5).
2.​ Dependencies: A requirements.txt or environment.yml file with

the exact library versions needed to run it.
3.​ Usage Script: A simple script showing how to load the model and make a

prediction on sample data.
4.​ Model Card: A README.md file detailing the model's architecture, the

dataset it was trained on, its performance metrics (e.g., accuracy,
precision/recall), and any known limitations or biases.

○​ Tooling: Use MLflow for tracking and packaging models. Export to a standard
format like ONNX for interoperability. Use Docker to create a complete, runnable
prediction environment.

●​ FEA/CFD Simulation Models:​

○​ The Why: The credibility of simulation results depends on the transparency of
the model that produced them. A packaged model allows for independent
verification, reproduction of results, and future modification.

○​ The How-To: A complete simulation package bundles:
1.​ The Model File: The core mesh and geometry files.
2.​ The Setup/Solver File: The configuration detailing all boundary

conditions, material properties, and solver settings.
3.​ A README.md: This must specify the exact software and version used

(e.g., "ANSYS Fluent 2022 R1"), the hardware it was run on, and a
summary of the case setup.

○​ Tooling: Archive these files together in a versioned .zip or .tar.gz file. For
long-term preservation and citation, upload this archive to a data repository like
Zenodo or Figshare.

●​ Fully Constituted Databases:​

○​ The Why: A database is a structured system, not just a collection of files. The
final deliverable must allow someone to perfectly recreate that system, including
its structure, relationships, and content.

○​ The How-To: A deployable database package includes:
1.​ Schema File: A .sql script that creates the complete table structure,

including all constraints and indexes.
2.​ Data Files: The data either as a single database dump file or as a set of

CSVs, one for each table.
3.​ Loading Script: A script or set of commands to populate the new

schema with the data.

4.​ Data Dictionary: A document explaining every table and column, their
data types, and their purpose.

○​ Tooling: Use standard database tools (e.g., pg_dump for PostgreSQL) to export
the schema and data. Keep the schema (.sql) and data dictionary files under
version control with Git.

Part 4: Dissemination & Archiving

A project that isn't communicated or preserved is a project that never happened. This final
phase ensures that your work reaches its intended audience, has a measurable impact, and
remains accessible and verifiable for the future. The deliverables here are about
communication, preservation, and establishing a permanent record of your contribution.

The goal is to transform your completed project into a lasting intellectual asset.

4.1 Communicating Progress and Findings

These deliverables are designed to keep stakeholders informed and share your work with the
broader technical community.

●​ Progress Reports:​

○​ The Why: These are essential for maintaining alignment with project sponsors,
management, or funding agencies. They enforce accountability, manage
expectations, and create a written history of the project's journey, which is
invaluable for final reporting.

○​ The How-To: Keep reports concise and structured for clarity. An effective report
is not a long narrative; it's a dashboard. Use a consistent template:

1.​ Reporting Period: (e.g., "August 1, 2025 - August 31, 2025")
2.​ Key Accomplishments: A bulleted list of completed milestones.
3.​ Progress vs. Plan: Are you on schedule? Reference the original timeline

from the Project Charter.
4.​ Issues & Risks: Note any blockers and the steps being taken to resolve

them. Reference the Risk Register.
5.​ Plan for Next Period: What are the next concrete goals?

○​ Tooling: Use a wiki like Confluence to create a running project log. For formal
reporting, a version-controlled document in a Git repository is best practice. Link
to specific tickets in Jira or GitHub Issues for details on task completion.

●​ Conference Presentations & Posters:​

○​ The Why: These are deliverables for sharing preliminary results, gathering
valuable feedback from peers, and establishing the project's presence within a
professional community. They are a critical part of the scientific and engineering
discourse.

○​ The How-To: Treat your slide deck or poster file as a formal, version-controlled
asset. Structure your presentation around a clear narrative:

1.​ The Problem: What question are you answering?
2.​ The Approach: What was your method?
3.​ The Key Results: What did you discover? (Show the graph, not the

table.)
4.​ The Conclusion: Why does it matter and what's next?

○​ Tooling: Use presentation software like PowerPoint or Google Slides. After
presenting, save a PDF version of the final slides/poster and commit it to your
project's repository for a permanent record.

4.2 Publishing the Definitive Results

These are the final, formal documents that serve as the definitive record of your project's
outcomes.

●​ Peer-Reviewed Manuscripts:​

○​ The Why: This is the gold standard for validating and disseminating new
knowledge. A peer-reviewed paper demonstrates that your work has been vetted
by independent experts and is considered a meaningful contribution to the field.

○​ The How-To: A modern manuscript is more than a PDF; it's the top layer of a
"reproducibility stack." The text tells the story, but it must link directly to the
evidence.

1.​ Data Availability Statement: This section is now mandatory for most
journals. It must explicitly state where the data supporting the paper can
be found.

2.​ Cite Your Data and Code: In the manuscript, include a formal citation to
your archived dataset and software, using the DOI you will generate in the
next step.

○​ Tooling: Use collaborative writing platforms like Overleaf (for LaTeX) which
have built-in version control. Manage citations with tools like Zotero or
Mendeley.

●​ The Final Project Report:​

○​ The Why: This is the bookend to the Project Charter. It is the comprehensive
deliverable for your funding agency or internal management that officially closes
the project. It summarizes the entire effort, from goals to outcomes, and formally
documents that the work is complete.

○​ The How-To: Structure the report to mirror the charter, demonstrating how you
fulfilled the original plan.

1.​ Executive Summary: A high-level overview of the project and its key
outcomes.

2.​ Original Objectives vs. Final Results: Directly address each goal from
the charter and describe the final result.

3.​ Final Deliverables: Provide a list of and links to all assets produced (e.g.,
the code repository, the archived dataset with its DOI, the final
publication).

4.​ Lessons Learned: A critical analysis of what went well and what could
be improved in future projects.

4.3 Protecting and Archiving Your Work

This is the final step: safeguarding your intellectual property and ensuring your data and code
are preserved as a permanent, citable resource.

●​ Patents & IP Filings:​

○​ The Why: If your project has produced a commercially valuable invention, this is
the formal process to protect it legally. A patent grants you the exclusive right to
the invention for a set period.

○​ The How-To: This is a legal process, not just a technical one. The key
deliverable from the technical team is an Invention Disclosure. This is a
detailed document that clearly explains what the invention is, how it works, what
makes it novel compared to existing technology, and who the inventors are. This
document is the foundation upon which legal counsel will build the formal patent
application.

○​ Tooling: The most critical tool here is your documentation history.
Well-maintained digital notebooks and a version-controlled Git repository provide
a timestamped, auditable trail of the invention process, which can be crucial
evidence.

●​ Archived Data, Code & Models with a DOI:​

○​ The Why: A project living only on a local hard drive or a private GitHub repository
is temporary and uncitable. Archiving it in a public repository ensures its
long-term preservation and, crucially, assigns it a DOI (Digital Object Identifier).
A DOI turns your dataset or software into a stable, citable artifact that others can
reference in their own work, just like a paper. This is the cornerstone of modern,
reproducible research and engineering.

○​ The How-To: The Zenodo Workflow

1.​ Prepare Your Package: Gather your final, curated dataset, your
commented source code, and your model files. Include a high-quality
README.md file that explains the contents and how to use them.

2.​ Archive: Compress this package into a single .zip or .tar.gz file.
3.​ Choose a Repository: General-purpose repositories like Zenodo and

Figshare are excellent choices. Many universities and funding agencies
also have their own dedicated repositories.

4.​ Upload and Describe: Upload your archive file. Fill out the metadata
carefully—this includes a descriptive title, the names of all
authors/creators, and an abstract. This metadata makes your work
discoverable.

5.​ Publish and Mint: Click "Publish." The repository will lock the files,
register your submission, and generate a unique DOI (e.g.,
10.5281/zenodo.1234567).

○​ Tooling: Zenodo has a direct integration with GitHub, allowing you to
automatically archive a specific release of your repository and get a DOI for it
with just a few clicks. This is the recommended best practice for any code-based
project.

Conclusion: From Checklist to Chain of Evidence

The journey through the four phases of a project reveals a critical truth: deliverables are not
arbitrary administrative hurdles. They are the structural components of a successful technical
endeavor. When viewed not as a checklist of isolated documents but as an interconnected
chain of evidence, their true value emerges.

This chain begins with the Project Charter, which sets a clear promise. That promise is given a
concrete plan in the WBS and Requirements Documents. The Technical Specifications and
Source Code then transform that plan into a tangible asset. The validity of that asset is
rigorously proven by the Test Reports, and its long-term value is finally cemented by a
peer-reviewed Manuscript and a permanently archived Dataset with a DOI.

Each deliverable serves as a link, transferring trust and context to the next phase:

●​ Without a Requirements Document, a Test Report has nothing to validate.
●​ Without a Data Management Plan, a Curated Dataset lacks context and authority.
●​ Without version-controlled Source Code and a Deployment Guide, a Trained Model is

a black box that cannot be trusted or reproduced.
●​ Without an Archived Dataset, a Manuscript's claims are unverifiable.

Adopting this structured approach is an investment. It requires discipline and forethought. But
the return on that investment is immense. It replaces ambiguity with clarity, chaos with order,
and one-off "works-on-my-machine" results with robust, professional assets. It is the difference

between an undocumented experiment and a reproducible discovery; between a fragile
prototype and a reliable engineering solution.

Ultimately, this methodology is about building with integrity. It ensures that the final result is not
just a number, a graph, or a piece of hardware, but something far more valuable: a conclusion
that is trustworthy, a solution that is dependable, and an intellectual contribution that will last.

	Deliverables in Scientific & Engineering Projects
	Introduction: A Practical Guide to Project Deliverables
	Why a Deliverable-Driven Workflow is Essential
	The Reality: Your Deliverables are Living Artifacts

	Part 1: Project Initiation & Planning
	1.1 From Idea to Action Plan: The Project Charter
	1.2 Defining the Scope: The WBS and Risk Register
	1.3 Planning for Data: The Data Management Plan (DMP)
	1.4 Setting Technical Goals: The Requirements Document

	Part 2: Execution & Development
	2.1 Designing the Solution: The Technical Blueprints
	2.2 Building the Asset: Code as a Deliverable
	2.3 Ensuring Quality & Reproducibility: SOPs
	2.4 Managing the Data: The Curated Dataset

	Part 3: Validation & Deployment
	3.1 Verification and Validation: The Test Report
	3.2 Preparing for Handoff: The Deployment Guide
	3.3 Packaging the Final Output: Self-Contained Technical Assets

	Part 4: Dissemination & Archiving
	4.1 Communicating Progress and Findings
	4.2 Publishing the Definitive Results
	4.3 Protecting and Archiving Your Work

	Conclusion: From Checklist to Chain of Evidence

