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Abstract
The quest for efficient and reliable energy storage systems has driven significant advancements in the field of physical-based
methods for State-of-Charge and State-of-Health assessment of batteries. This paper presents a comprehensive overview of
these methods, leveraging fundamental principles of physics and materials science to unveil the intricate dynamics within
battery systems. Covering techniques like Coulomb counting, Open Circuit Voltage analysis, Peukert’s equation, Electro-
chemical Impedance Spectroscopy, Gas Chromatography, and cutting-edge imaging approaches such as X-ray Diffraction
and Magnetic Resonance Imaging, this review elucidates the principles, instrumentation, and applications of each method.
Moreover, it delves into recent breakthroughs that enhance their accuracy and applicability. These physical-based methods not
only empower battery management systems but also hold the key to advancing electric vehicles, renewable energy solutions,
and a sustainable energy future.
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Introduction

Battery energy storage systems play a vital role in various
applications, including electric vehicles, renewable energy
integration, and portable electronic devices. Accurate assess-
ment of theState-of-Charge (SoC) andState-of-Health (SoH)
of batteries is crucial for optimizing their performance, ensur-
ing reliability, and extending their lifespan. Over the years,
numerous assessmentmethods have been developed, ranging
from empirical techniques to more advanced physics-based
or white-box methods.

This literature review focuses on the SoC and SoH assess-
ment of batteries using physics-based or white-box methods.
These methods rely on fundamental electrochemical princi-
ples, mathematical models, and system dynamics to estimate
the SoC and SoH of batteries. Unlike empirical methods,
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physics-based approaches provide a deeper understanding of
battery behavior, enabling more accurate and reliable assess-
ment.

The review begins by discussing the importance of
SoC and SoH assessment in Battery Management Systems
(BMSs) and the challenges associatedwith traditional empir-
ical techniques. It then delves into the principles and concepts
of physics-based methods, emphasizing their ability to cap-
ture the underlying electrochemical processes and battery
characteristics.

The review highlights the importance of integrating
physics-based methods with other diagnostic techniques
to achieve comprehensive battery health assessment. This
integration allows for a holistic understanding of battery
behavior, combining electrical, thermal, and electrochemi-
cal measurements to provide a more accurate assessment of
SoC and SoH.

Overall, this literature review aims to provide a compre-
hensive overview of the current state of the art in SoC and
SoH assessment using physics-based or white-box methods.
Critically evaluating the principles, advantages, and limi-
tations of these techniques will contribute to the existing
knowledge and assist researchers, engineers, and practition-
ers in selecting appropriate methods for BMS and diagnos-
tics. Ultimately, the adoption of physics-based approaches
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can enhance the reliability, safety, and performance of bat-
tery systems in various applications.

The paper is organized as follows: in Section“Overview
of Physics-Based Methods", an overview of all the meth-
ods discussed in this paper is provided; electrical methods
are presented in Section“Direct Electrical Methods"; analyt-
ical chemistry methods are described in Section“Chemical
Analysis Methods"; spectroscopic methods are covered in
Section“Spectroscopic Methods"; imaging and microscopy
methods are examined in Section“Imaging and Microscopy
Methods"; mechanical methods are outlined in Section
“Mechanical Methods". The paper concludes with a sum-
mary in Section“Conclusion".

Overview of Physics-BasedMethods

Accurate estimation of the SoC and SoH of batteries is
essential for optimizing their performance, ensuring safe
operation, and prolonging their lifespan. The SoC represents
the amount of available energy in a battery, while the SoH
reflects its remaining capacity or health over time.

A wide range of physics-based methods have been devel-
oped to estimate SoC and SoH in batteries. These methods
leverage the physical characteristics and properties of the
battery components to derive meaningful information about
their state. They offer advantages such as direct measure-
ment, non-destructiveness, and the ability to capture internal
phenomena that affect the battery’s performance.

This survey paper aims to provide a comprehensive
overview of the state-of-the-art physics-based methods for
SoC and SoH computation in batteries. It explores their
common features, challenges, and potential applications,
shedding light on their capabilities and limitations.

Inputs

The metrics used for SoC and SoH estimation in batteries
vary depending on the specific technique employed. How-
ever, several common metrics are frequently utilized across
different estimation methods. Here are some of the key met-
rics used for SoC and SoH estimation:

• Voltage: Battery voltage is one of the most fundamental
metrics used for SoC estimation. It involves measuring
the battery’s terminal voltage and relating it to voltage
characteristics at different SoC levels. Changes in volt-
age during charging or discharging can provide valuable
information about the battery’s state.

• Current: Battery current, measured during charge and
discharge cycles, is often used in conjunction with
voltage to estimate SoC. Integrating current over time

(ampere-hour integration) provides an estimation of the
total charge delivered or extracted from the battery.

• Impedance: Electrochemical Impedance Spectroscopy
(EIS) and impedance-based techniques utilize the freq-
uency-dependent behavior of the battery’s impedance to
extract information about its electrochemical processes.
Impedance-based metrics, such as resistance, capaci-
tance, and impedance magnitude or phase, are often used
in SoC and SoH estimation methods.

• Capacity: Battery capacity is a key metric for SoH esti-
mation. It represents the amount of charge a battery can
store and deliver. Capacity fade analysis, which involves
monitoring the degradation of battery capacity over time,
is a common approach for estimating SoH.

• Temperature: Temperature is an important metric that
affects battery performance and degradation. Temperature-
based methods utilize temperature measurements during
battery operation to estimate SoC and SoH. Fluctuations
in temperature can indicate the internal state of the battery
and its thermal behavior.

• Electrochemical Parameters: Some estimation meth-
ods rely on electrochemical parameters, such as diffusion
coefficients, exchange current density, or concentration
profiles, to infer SoC and SoH. These parameters are
typically obtained throughmodeling or experimental cal-
ibration.

• Aging Indicators: SoH estimation often involves track-
ing specific indicators of battery aging, such as capacity
fade rate, impedance growth, or changes in voltage
behavior. These indicators provide insights into the
degradation mechanisms and remaining battery lifespan.

• Other factors may also be considered.

It’s important to note that different estimation methods
may rely on a combination of these metrics, and the spe-
cific algorithms and models used for estimation can vary.
Additionally, advanced techniques may incorporate machine
learning or data-driven approaches to enhance the accuracy
and reliability of SoC and SoH estimation.

Validation

Validating SoC and SoH estimation methods for batteries is
crucial to ensure their accuracy and reliability. The validation
process involves comparing the estimated values obtained
from the estimation method with reference values or ground
truth data. Here are some common approaches and tech-
niques used to validate SoC and SoH estimation methods:

• Reference Techniques: Comparing the results of the
estimation method with those obtained from reference
techniques is a common validation approach. Reference
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techniques are well-established, highly accurate methods
for measuring SoC and SoH, such as coulomb counting,
laboratory-grade testing, or destructive testing. By com-
paring the estimated values with the reference values, the
accuracy of the estimation method is assessed.

• ExperimentalValidation: Conducting controlled exper-
iments is another approach to validate SoC and SoH esti-
mation methods. This process involves subjecting batter-
ies to controlled charging and discharging cycles while
simultaneously monitoring and recording the actual SoC
and SoH using reference techniques. The estimated val-
ues are then compared against the measured reference
values to evaluate their accuracy.

• Field Testing: Deploying the estimation method in real-
world applications and comparing the estimated values
with field measurements is another form of validation.
Field testing involves using the estimation method in
actual BMSs, such as electric vehicles or energy stor-
age systems, and collecting data over an extended period.
The estimated SoC and SoH values are validated against
fieldmeasurements obtained frommonitoring systems or
periodic testing.

• Long-Term Evaluation: Battery aging is a long-term
process, and validating SoH estimation methods over
extended periods is important. Long-term evaluation
involves monitoring batteries over their entire lifespan
and periodically assessing the estimated SoH values
against actual degradation measurements. This helps
assess the method’s ability to accurately track battery
aging and predict its remaining useful life.

Statistical analysis techniques are often used to evaluate
the performance of SoC and SoH estimation methods. This
involves analyzing the differences between estimated values
and reference values using metrics such as mean absolute
error, root mean square error, or correlation coefficients. Sta-
tistical analysis helps quantify the accuracy and precision of
the estimation method and provides insights into its perfor-
mance.

Battery Management System

The BMS plays a crucial role in ensuring the safe operation
and effective power management of batteries. In addition to
its primary functions, advancedBMSs offer valuable insights
into the SoC and SoH of the Lithium-Ion battery (LIB) (see
Fig. 1). However, accurately estimating SoC and SoH from
limited input and output measurements (voltage, current, and
surface temperature) poses a challenge due to the intricate
electrochemical side reactions within the battery.

Internal factors, including charge/discharge rates, operat-
ing temperature, internal aging, abnormal charging-dischar-

Fig. 1 Battery Management System

ging cycles, and internal faults, can significantly impact
the health of the LIB. Developing intelligent and resilient
BMSs capable of health-conscious decision-making requires
a comprehensive understanding of both internal and exter-
nal degradation mechanisms. This paper provides a thorough
review of these degradation mechanisms, focusing on both
the anode and cathode of LIBs. Mathematical models and
correlations with SoH metrics such as capacity and power
fade are discussed, emphasizing the integration of various
electrochemical models with internal degradation mecha-
nisms.

Considering these degradationmechanisms, variousmeth-
ods have been developed to detect specific types of aging.
Each of these aging mechanisms is influenced by factors
such as time, temperature, voltage, current load, cell design,
pressure, and mechanical stress. Among the degradation
mechanisms, the presented methods are useful for detecting
the following:

• Anode Aging: solid-electrolyte interphase (SEI) growth
or decomposition, plating/dendrite formation, electrode
particle cracking, graphite exfoliation, and structural dis-
ordering.

• Cathode Aging: Cathode electrolyte interface forma-
tion, material phase transition, deposition on the anode,
migration of dissolved products, and electrolyte decom-
position.
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• Other Factors: Binder decomposition, corrosion of the
current collector, loss of electrical contact, and decrease
in porosity.

White-BoxModels

Researchers are exploring more sophisticated and detailed
white-box models that consider additional factors such as
temperature, aging mechanisms, and operating conditions.
These models aim to improve accuracy and capture the
complex electrochemical behavior of batteries more com-
prehensively.

Future research may focus on developing multiscale
white-box models that integrate information from different
length and time scales [1, 2]. These models could bridge
the gap betweenmicroscopic battery electrode processes and
macroscopic systembehavior, providing amore accurate rep-
resentation of the battery’s SoC and SoH.

White-box models can be extended to incorporate mul-
tiphysics phenomena, such as mechanical stresses, thermal
effects, and electrochemical–mechanical coupling [3, 4].
This holistic approach enables a more comprehensive anal-
ysis of battery performance and degradation, leading to
improved SoC and SoH assessment.

To mitigate external factors, studies could focus on
developing application-specific white-boxmodels tailored to
particular industries or sectors. These models can account
for specific operating conditions, load profiles, and environ-
mental factors relevant to applications like electric vehicles,
renewable energy storage, or portable electronics.

As newbattery chemistries and technologies emerge, there
is a need to developwhite-boxmodels specifically tailored for
these systems. Future research may focus on expanding the
applicability of white-box models to include emerging bat-
tery chemistries, such as solid-state batteries, lithium-sulfur
batteries, and beyond. Additionally, research may emphasize
the development of standardized benchmarks and validation
protocols for white-box models in SoC and SoH assess-
ment. Standardization ensures comparability and facilitates
the adoption of these models in various applications and
industries.

White-box models can benefit from the integration of sen-
sor technologies, such as advanced monitoring systems and
embedded sensors, to enhance model accuracy and enable
real-time estimation of SoC and SoH. Combining data from
sensors with white-box models can provide a comprehensive
and reliable assessment of battery performance. Furthermore,
advanced sensor technologies have been discussed in previ-
ous sections in the context of specific methodologies.

Efforts are being made to enhance parameter estimation
techniques for white-box models. This includes the devel-
opment of advanced optimization algorithms, data-driven
approaches, and machine learning techniques to determine

model parameters accurately, even in the presence of uncer-
tainty or limited data [5, 6]. There is growing interest in
leveraging artificial intelligence techniques, such as machine
learning anddeep learning, to enhancewhite-boxmodels.AI-
driven approaches can assist in data-drivenmodeling, pattern
recognition, and predictive analytics, enablingmore accurate
and adaptive estimation of SoC and SoH.

A grey-box model refers to a modeling approach that
combines elements of both white-box (physics-based) and
black-box (empirical or data-driven) modeling techniques.
Grey-box models aim to strike a balance between the accu-
racy of white-box models, which are based on a deep
understanding of the underlying physical processes, and the
flexibility of black-box models, which are built solely from
observed data.

A grey-boxmodel typically incorporates some knowledge
of the battery’s internal physics and chemistry, such as its
electrochemical behavior, thermal characteristics, or aging
processes [7, 8]. However, it may also use empirical data
or machine learning techniques to account for complex or
poorly understood phenomena. Future research will focus
on further exploring and improving these grey-box models.

Methods Overview

This paper presented the following methods with all their
references:

• Direct Electrical Methods (Section“Direct Electrical
Methods")

1. Coulomb Counting, Ampere-Hour Integration (Sub-
section“Coulomb Counting"): [9–15]

2. OpenCircuit Voltage (Subsection“OpenCircuit Volt-
age"): [16–24]

3. Peukert’s Equation (Subsection“Peukert’s Equation"):
[25–28]

4. Electrochemical Impedance Spectroscopy (Subsec-
tion“Electrochemical Impedance Spectroscopy"):
[29–40]

• Chemical Analysis Methods (Section“Chemical Analy-
sis Methods")

1. Gas Evolution Analysis (Subsection“Gas Evolution
Analysis"): [41–44]

2. Electrochemical Noise Analysis (Subsection“Elec-
trochemical Noise Analysis"): [45, 46]

3. Gas Chromatography (Subsection“Gas Chromatog-
raphy"): [42, 47–49]

4. Secondary Ion Mass Spectrometry (Subsection“Sec-
ondary Ion Mass Spectrometry"): [50–54]

5. Electrochemical Mass Spectrometry (Subsection
“Electrochimical Mass Spectrometry"): [42, 55–57]
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• Spectroscopic Methods (Section“Spectroscopic Meth-
ods")

1. Raman Spectroscopy (Subsection “Raman Spec-
troscopy"): [58–64]

2. Laser-InducedBreakdownSpectroscopy (Subsection
“Laser-Induced Breakdown Spectroscopy"):[65–68]

3. Positron Annihilation Spectroscopy (Subsection
“Positron Annihilation Spectroscopy"): [69–75]

4. X-ray Diffraction Spectroscopy (Subsection “X-ray
Diffraction Spectroscopy"): [76–82]

5. X-ray Absorption Spectroscopy (Subsection “5.5"):
[80–87]

6. X-ray Photoelectron Spectroscopy (Subsection
“X-ray Photoelectron Spectroscopy"): [51, 81, 82,
88–90]

• Imaging andMicroscopyMethods (Section“Imaging and
Microscopy Methods")

1. Neutron Imaging (Subsection“Neutron Imaging"):
[91, 91–95]

2. X-ray Microscopy Imaging (Subsection
“X-ray Microscopy Imaging"): [81, 82, 96–98]

3. X-ray Computed Tomography (Subsection “X-ray
Computed Tomography"): [81, 82, 99–108]

4. Magnetic Resonance Imaging (Subsection“Magnetic
Resonance Imaging"): [99, 109–123]

5. Atomic Force Microscopy (Subsection“Atomic Force
Microscopy"): [124–128]

6. Scanning Electron Microscopy (Subsection“Scan-
ning Electron Microscopy Imaging"): [99, 129–147]

• Mechanical Methods (Section“Mechanical Methods")

1. Mechanical Stress (Subsection“Mechanical stress"):
[148–150]

2. Ultrasonic Testing (Subsection“Ultrasonic Testing"):
[99, 151–158]

Direct Electrical Methods

Electrical methods play a fundamental role in the assess-
ment of battery health and performance. These methods,
including Coulomb Counting, Open Circuit Voltage (OCV),
Peukert’s Equation, and EIS, offer valuable insights into the
SoC and SoC of batteries. By analyzing electrical charac-
teristics and parameters, these techniques provide crucial
information about a battery’s capacity, efficiency, and overall
condition.

Together, these electrical methods form the foundation
of battery assessment, aiding in the development of accu-
rate models and management strategies for batteries used in
various applications, from consumer electronics to electric

vehicles and renewable energy systems. Understanding these
methods is essential for optimizing battery performance,
prolonging battery lifespan, and ensuring safe and efficient
operation.

Coulomb Counting

Method

Coulomb counting is a widely used method for estimat-
ing battery charge and health. It calculates the SoC or SoH
by integrating the current flowing in or out of the battery
over time, considering the fundamental principle that one
Coulomb of charge is equivalent to one Ampere-second
of current. While this method is simple and effective, its
accuracy can be affected by factors such as battery aging
and temperature variations. Movassagh et al. [9] provide an
enhanced Coulomb counting method that addresses mea-
surement error, integration error, capacity uncertainty, and
oscillator error.

To improve the Coulomb counting method, it is useful to
examine the Ampere-Hour Integration method [10]. First,
it is necessary to distinguish this method from Coulomb
Counting. In simple terms, the Coulomb Counting method
is actually a special case of the Ampere-Hour Integration
method. The Coulomb method calculates charge by assum-
ing a current intensity of one ampere for a second.

Since the Coulomb unit is too small, leading to large
numerical values for battery capacity, the Ampere-hour (Ah)
unit is more suitable. The process used for measuring SoC
andSoH is the same in bothmethods,with the only difference
being the units of measurement.

In conclusion, Coulomb counting is a widely usedmethod
for estimating the SoC of LIBs. It is simple, cost-effective,
anddoes not requiremodel parameters.However, thismethod
has limitations, particularly for SoH estimation, and its accu-
racy can degrade over time. Therefore, it is important to
consider the use of complementary methods, such as data-
driven approaches [11], alongside Coulomb counting to
achieve more accurate and reliable SoC and SoH estimates.

Experimental Protocol

Thematerials used in a typicalCoulombcounting experiment
include the battery under investigation, a precision ammeter,
a voltmeter, and a data acquisition system. The battery is con-
nected to the ammeter, which measures the electric current
flowing in or out of the battery during charge and discharge
cycles. Simultaneously, the voltmeter monitors the voltage
across the battery terminals, providing crucial information
about the electrochemical processes occurring within.

To initiate the experiment, the battery is charged with a
known current while recording the voltage and time data.
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This charging phase is closely monitored until a predefined
endpoint, such as reaching a specific voltage level or a des-
ignated elapsed time. Subsequently, the battery undergoes a
controlled discharge, and the corresponding current, voltage,
and time data are recorded again.

The acquired data is then analyzed using the Coulomb
counting algorithm, which integrates the measured current
over time. This integration yields the total electric charge that
has flowed in or out of the battery during the experiment.

SoC Estimation

It relies on the principle that the SoC is directly proportional
to the accumulated charge. The method involves measuring
the current flowing into or out of the battery using a current
sensor. The measured current is integrated over time to cal-
culate the accumulated charge. The accumulated charge is
then divided by the battery’s total capacity to determine the
SoC, as shown in Eq. 1.

SoC(t) = SoCini + n f

Q

t∫

tini

I (t) dt (1)

This equation is widely used to estimate the SoC of a
battery over time using the Coulomb counting method (also
known as electric charge integration). Below is an explana-
tion of the variables in the equation:

• SoC(t) represents the SoC at a specific moment t , denot-
ing the battery’s charge level at that point. It is expressed
as a percentage, where 0% signifies complete discharge,
and 100% signifies full charge.

• SoCini is the initial SoC of the battery at the start of the
estimation process.

• n f (Farad conversion factor) adjusts the calculation
based on the battery’s charging or discharging behav-
ior, improving accuracy by considering battery-specific
characteristics.

• Q is the nominal battery capacity, expressed in Ah.
• I (t) is the electric current flowing through the battery at
a given moment t .

• tini is the initial moment when SoC estimation begins,
serving as the starting point for current integration.

When the battery is charging (I > 0), its actual capac-
ity may deviate from the nominal capacity. The n f factor
accounts for this variation, often being greater than 1, indi-
cating an effective capacity higher than the nominal capacity.
When the battery is discharging (I < 0), the n f factor may
be equal to 1 (if capacity remains unchanged) or differ from
1 to reflect a different effective capacity.

The Coulomb counting method remains unaffected by
power fluctuations that cause battery voltage drops, ensur-
ing that accuracy remains consistent regardless of battery
usage. For a more detailed discussion on this method and
recent enhancements, refer to [12].

Coulomb counting is typically combined with other SoC
estimation methods to improve accuracy and mitigate limita-
tions. By integrating Coulomb counting with voltage-based
methods, EIS, or advanced modeling techniques, more pre-
cise SoC estimation can be achieved, leading to better BMS
performance across various applications.

Temperature fluctuations affect SoC computation. To
mitigate these errors, incorporating temperature compen-
sation techniques is recommended. Regular calibration of
the current sensor and adjustment of calibration factors can
also enhance accuracy. Additionally, the use of advanced
algorithms, such as state estimation filters (e.g., Kalman fil-
ters [13]), helps reducemeasurement errors and improve SoC
estimation accuracy.

SoH Estimation

Coulomb counting can also be used to estimate the SoH of
a LIB [14]. This is done by comparing the actual battery
capacity over time to the capacity predicted by Coulomb
counting. The difference between these two values indicates
capacity fade, which can serve as an estimate for the battery’s
SoH.

However, Coulomb counting has limitations in accurately
estimating SoH since it does not account for other fac-
tors affecting battery health, such as impedance growth and
voltage deviation. Additionally, the accuracy of Coulomb
counting-based SoH estimation declines over time due to
measurement errors and the need for periodic calibra-
tion [15].

Results and Deepening

The survey byBalasingam et al. [9] provides numerous refer-
ences related toCoulomb counting equations and algorithms.
Their work considers factors such as current measure-
ment error, integration approximation error, battery capacity
uncertainty, and timing oscillator error/drift. Recent findings
from their research are also presented.

Open Circuit Voltage

Method

The battery’s terminal voltage is measured when it is in an
open-circuit state, i.e., no current is flowing into or out of it.
A calibration curve or lookup table is established by relating
the measured terminal voltage to the corresponding SoC val-
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ues. The measured terminal voltage is then compared to the
calibration curve or lookup table to estimate the SoC. The
SoH can be inferred from SoC trends over multiple charge–
discharge cycles.

Voltage-based methods are widely used for estimating
the SoC and SoH of LIBS [16, 17]. These methods benefit
frombeing based on ameasurable physical parameter-battery
voltage-and can be combined with other methods, such as
Coulomb counting and capacity fading, to enhance accuracy.
However, it is important to note that the accuracy of voltage-
based methods is influenced by factors such as temperature
and measurement errors [18].

By integrating the OCV method with Coulomb counting,
Kalmanfilters, or advancedmodeling techniques [19], amore
precise SoC estimation can be achieved, enabling better BMS
control for various applications.

Experimental Protocol

The materials for an OCV experiment typically include a
test battery, a voltmeter with high input impedance (to min-
imize current flow and prevent measurement interference),
and appropriate connecting wires. The experiment begins
by disconnecting the battery from any external load or cir-
cuit, allowing it to stabilize in an idle state. This ensures that
themeasured voltage represents the inherent electrochemical
potential of the battery without external influences.

The voltmeter is then connected across the battery ter-
minals, and the voltage reading is recorded over a defined
period. It is essential to allow sufficient time for the OCV to
stabilize, as some batteries exhibit transient behavior before
reaching a steady state. Extended monitoring is often per-
formed to observe long-term voltage trends. In some cases,
tests are conducted within a temperature-controlled chamber
to assess the influence of temperature variations on battery
SoH. Battery aging can be quantified by conducting these
tests under simulated driving and monitoring conditions.

SoC Estimation

To estimate a battery’s SoC using the OCVmethod, onemust
first measure the battery’s voltage at rest, meaning when no
charge or discharge is occurring. Subsequently, it is neces-
sary to construct a calibration curve using empirical data or
manufacturer-provided specifications. SoCestimation is then
performed by comparing the battery’s OCV with this empir-
ical curve. A higher OCV corresponds to a higher SoC, and
vice versa.

In summary, the OCV method relies on associating mea-
sured OCV values with an established SoC correlation curve.

While this method is straightforward to implement, calibra-
tion is often required to ensure accuracy.

To obtain an OCV curve with sufficient resolution, it is
necessary to refine the measurement interval to 5% SoC or
lower at the beginning and end of a charge or discharge cycle.
Reducing the SoC interval below 5% increases experimental
duration, making the process more time-consuming In the
mid-SoC range, larger intervals are acceptable because OCV
variations with SoC are less pronounced.

It is important to note that OCV decreases as tempera-
ture drops for the same SoC level, as demonstrated by Xing
et al. [20]. To address this issue, they propose an improved
battery model to minimize temperature-related errors. Their
findings indicate that even minor voltage deviations in OCV
estimation can lead to significant SoC errors under the same
temperature conditions.

To mitigate these errors and improve SoC accuracy,
model-based techniques such as the unscented Kalman fil-
tering approach [21] can be implemented.

SoH Estimation

OCV can also be used to estimate battery SoH. One common
approach is the voltage deviation method, which evaluates
deviations of battery voltage from its nominal value as an
indicator of SoH.Thismethod is based on the assumption that
battery voltage decreases as SoHdeteriorates,with the degree
of voltage deviation correlating to the extent of degradation.

Another voltage-based SoH estimation technique is the
voltage-based capacity fading method [22], which combines
OCVmeasurementswith capacity fade analysis. Thismethod
leverages voltage deviations to correct accumulated errors
in capacity fade estimation, yielding higher accuracy than
capacity fade analysis alone.

Since temperature also impacts SoH, Schmalstieg et al.
[23] propose a holistic model incorporating multiple vari-
ables. Their research demonstrates that cycling a battery
around mid-range voltages minimizes aging effects. Their
proposed model consists of three components: Impedance-
based electrical model, Thermal model, Aging model. In this
approach, voltage, temperature, SoH, and current data from
the combined electro-thermal model serve as inputs for the
aging model, enabling accurate aging predictions under dif-
ferent battery cycling conditions and BMS strategies.

Results and Deepening

Pillai et al. [24] provide an in-depth review of OCV models,
parameter optimization techniques, and their integrationwith
data-driven and error-approximation algorithms.
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Peukert’s Equation

Method

Peukert’s Equation is a mathematical model used to estimate
battery capacity anddischarge characteristics. It describes the
relationship between discharge current, time, and available
capacity. The Peukert exponent (k) (see Eq. 2, where C is
the available capacity, I is the discharge current, and t is the
discharge time) depends on battery chemistry and discharge
characteristics. It quantifies how battery capacity varies with
different discharge rates.

Battery capacity, expressed in Ah, represents how much
current a battery can supply over time. For example, if a
100Ah battery is discharged at a constant current of 5A, it
will be fully depleted in 20h. The discharge rate is typi-
cally expressed using the C-rate, which indicates the time
remaining before depletion. Higher discharge rates result in
lower available capacity. The relationship between slow and
fast discharge rates is characterized by Peukert’s law, with
k indicating how battery capacity changes at different dis-
charge currents.

Peukert’s Equation is a simplified model that provides a
rough estimation of battery capacity based on discharge char-
acteristics. It is often used alongside other battery modeling
techniques and system simulations to enhance capacity pre-
diction accuracy [25]. However, the accuracy of Peukert’s
Equation varies depending on battery chemistry, age, temper-
ature, and other factors affecting battery performance [26].

C = I k ∗ t

k = log(t2)−log(t1)
log(I1)−log(I2)

(2)

Experimental Protocol

The primary materials required include the test battery, an
ammeter to measure discharge current, a timer or data acqui-
sition system, and a method for recording battery capacity.
The experiment begins with a fully charged battery at a
known SoC.

The battery is then discharged at a controlled constant
current while measuring discharge time. Simultaneously,
discharge current and voltage are monitored and recorded.
Maintaining a constant discharge current is essential to
accurately apply Peukert’s equation. The collected data is
analyzed using regression analysis or other curve-fitting tech-
niques to determine the Peukert exponent (k) and constant
values. Conducting tests in a temperature-controlled cham-
ber significantly improves measurement reliability.

The use of specific resistive loads ensures uniform dis-
charge conditions across all tested cells. This protocol
simulates real-world discharge scenarios, including tempera-

ture variations and current fluctuations, to enhance relevance
for electric vehicle applications.

SoC Estimation

To calculate the Peukert exponent, two nominal battery
capacity values are required. Battery ratings can be found in
the manufacturer’s datasheet. However, Peukert’s exponent
provides only an approximate estimation of battery SoC. At
very high discharge currents, the battery delivers even less
capacity than predicted by a fixed Peukert exponent.

SoH Estimation

By comparing initial battery capacity and internal resistance
at the beginning of life, Peukert’s equation can be used to
estimate SoH. To perform this estimation, the battery must
first be tested to determine its actual capacity and internal
resistance. Peukert’s equation is then applied to this data to
estimate the current battery capacity and SoH.

However, research [27] has demonstrated that a battery
can still deliver additional capacity even after reaching full
discharge if allowed to rest before further discharge. This
means that significant capacity can still be extracted at
lower discharge currents. Peukert’s equation is strictly valid
for batteries discharged under constant temperature and at
a fixed current. When applied to batteries with variable
discharge rates and fluctuating temperatures, Peukert’s equa-
tion typically underestimates the remaining capacity, unless
adjustments are made using an effective or average current.

Results and Deepening

Galushkin et al. [28] analyze variations in Peukert’s equa-
tion and its applicability to LIB. Their research optimizes
Peukert’s model formultiple battery types, enhancing its pre-
dictive accuracy.

Electrochemical Impedance Spectroscopy

Method

EIS involves measuring the impedance response of a bat-
tery at different frequencies to extract valuable information
about its electrochemical behavior [29]. The method applies
a small-amplitude sinusoidal voltage signal across the battery
terminals and measures the resulting current response. This
process is repeated across a range of frequencies, typically
spanning from low to high.

The response ismeasured in terms of complex impedance,
consisting of both magnitude (amplitude) and phase infor-
mation. The obtained impedance data is typically visualized
using Nyquist or Bode plots [30, 31], which reveal the elec-
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trical properties of the battery across different frequencies.
Analyzing this impedance data provides insights into the bat-
tery’s electrochemical processes and internal behavior.

Experimental Protocol

The materials required for an EIS experiment include: An
electrochemical cell or battery under investigation (non-
destructive method); A potentiostat/galvanostat to control
potential or current; A reference electrode, counter elec-
trode, and working electrode; A frequency response analyzer
to apply small-amplitude perturbations across a frequency
range.

The experiment begins with the assembly of the elec-
trochemical cell, ensuring proper connections and electrode
placement. The cell is then subjected to a small-amplitude
sinusoidal perturbation, and the resulting current response is
recorded. This process is repeated across multiple frequen-
cies, often spanning several orders of magnitude.

The collected impedance data is represented as a Nyquist
or Bode plot, where impedance maps are generated and ana-
lyzed using SIM software. The data is validated against the
Kramers-Kronig law, ensuring consistency and accuracy.

To interpret the EIS results, an equivalent circuit model
is established based on the impedance curve and electro-
chemical knowledge [32]. Parameter values are determined
using nonlinear least squares fitting theory, allowing extrac-
tion of key electrochemical properties such as charge transfer
resistance, double-layer capacitance, and other battery char-
acteristics.

Experimental conditions, including electrolyte composi-
tion, temperature, and applied potential or current, can be sys-
tematically varied to investigate their impact on impedance
behavior.

SoC Estimation

Ran et al. [32] propose a method for estimating SoC using
EIS. They analyze the EIS response of LIB, which consists
of an inductive arc at high frequencies and two capacitive
arcs at lower frequencies.

By combining equivalent circuit modeling and nonlinear
least squares fitting, they extract circuit parameters that vary
with SoC, establishing a correlation curve (see Fig. 2).

SoH Estimation

Li et al. [33] explain two main methods for estimating SoH
by EIS: one is based on equivalent circuit model method [34,
35], the second one is based on deep learning method.
However, both approaches fail to consider the effects of tem-
perature and SoC variations during testing. To address this
limitation, Wang et al. [36] propose a new model that incor-
porates these factors.

Building on this research, Zhang et al. [37] develop
a probabilistic model for SoH estimation, incorporating
charge transfer resistance, temperature, and SoC as key
input variables. Their model achieves an estimation error
of approximately 4% when accounting for both temperature
and SoC. Under specific conditions (80% SoC at 30°C), the
estimation error is further reduced to 1.29%.

Implementing this method requires expertise in experi-
mental techniques, data analysis, and battery electrochem-
istry. Combining EIS with complementary techniques, such
as voltage-based methods or impedance spectroscopy across
different temperatures, can improve battery health assess-
ments and performance predictions.

Results and Deepening

Vadhva et al. [38] provide a detailed explanation of the
EIS experimental protocol and its variations. Liu et al. [39]
offer an in-depth review of SoH estimation techniques, while
Wang et al. [40] explore SoC estimation using EIS.

Chemical Analysis Methods

Electrochemical methods are at the forefront of battery anal-
ysis and diagnostics, providing crucial insights into the SoC
andSoHof energy storage systems. This group of techniques,
which includes EIS, Gas Evolution Analysis, and Electro-
chemical Noise Analysis (ENA), employs the principles of

Fig. 2 Equivalent circuit to
carry through EIS simulation
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electrochemistry to scrutinize the inner workings of batteries
and cells.

Analytical chemistry methods have revolutionized our
ability to comprehensively assess the SoC and SoH of batter-
ies and energy storage systems. Among these methods, Gas
Chromatography (GC), Secondary Ion Mass Spectrometry
(SIMS) and Electrochimical Mass Spectrometry (MS) stand
out as powerful tools in the field of battery diagnostics and
analysis.

Collectively, these electrochemical methods offer a holis-
tic view of a battery’s condition, enabling researchers and
engineers to optimize battery design, predict end-of-life sce-
narios, and ensure the safe and efficient operation of energy
storage systems across various industries, from electric vehi-
cles to renewable energy installations.

Gas Evolution Analysis

Method

Gas evolution analysis involves monitoring and analyzing
gaseous emissions, primarily hydrogen (H2) and oxygen
(O2), to assess battery condition anddetect potential degrada-
tion [41]. During charging, discharging, or resting periods,
gases emitted from the battery are collected and analyzed.
This is typically performed using gas sensors or GC tech-
niques, which detect and quantify the concentrations of
different gases. For an overview of this method, refer to [42].

Calibrating gas sensors and establishing correlations
between gas emissions and battery conditions are critical
for accurate analysis. Calibration experiments using well-
characterized battery samples under controlled operating
conditions help establish accurate relationships between gas
evolution and degradation mechanisms.

To ensure precise gas measurements and minimize inter-
ference, environmental factors such as temperature, humid-
ity, and ventilation must be controlled. Standardizing test
conditions and procedures further enhances the reliability
and comparability of gas evolution analysis results.

Experimental Protocol

Materials used include the electrochemical cell or system
under investigation, gas collection apparatus (e.g., gas burette
or gas chromatograph), electrodes, a potentiostat/galvanostat
to control the electrochemical processes, and a suitable elec-
trolyte. The setup should allow for the safe and efficient
collection of evolved gases.

The experimental setup must allow for the safe and effi-
cient collection of evolved gases. Careful monitoring of gas
volume and composition over time is essential. Tests typi-
cally vary experimental parameters such as applied potential,

current density, and electrolyte composition to analyze their
impact on gas evolution.

Collected gases are analyzed using GC to identify and
quantify individual components. Calibration with known gas
concentrations is necessary to ensure accurate mass spec-
trometry signal interpretation.

The study also considers aging-related gas emissions,
accounting for pressure variations during experiments. Gas
evolution is examined under different cycling conditions,
including variations in C-rates and voltage limits. Open-
circuit potentialmeasurements followeach charge–discharge
cycle.

SoH Estimation

By analyzing the type and quantity of emitted gases, bat-
tery SoH can be evaluated. Mattinen et al. [43] demonstrate
that the most significant capacity loss occurs during high-
rate cycling, specifically in 3C and 4C charge–discharge
sequences.

Results and Deepening

Rowden et al. [42] andNarayan et al. [44] provide an in-depth
examination of gas evolution processes and their relationship
to battery faults.

Electrochemical Noise Analysis

Method

ENA is a technique used to study the electrochemical behav-
ior and performance of batteries by analyzing small electrical
fluctuations or noise signals that occur during battery opera-
tion. The recorded noise signals are analyzed using various
techniques, including statistical analysis, power spectral
density analysis, autocorrelation analysis, and wavelet anal-
ysis [45]. These analyses help extract information about
underlying electrochemical processes, such as corrosion,
charge transfer reactions, and diffusion mechanisms.

Experimental Protocol

Materials for an ENA experiment typically include the elec-
trochemical cell or system under investigation, electrodes, a
potentiostat/galvanostat for controlling the electrochemical
conditions, and a suitable electrolyte. The setup should be
designed to minimize external interference and noise. The
experimental setup must be designed to minimize external
interference and noise, ensuring accurate signal acquisition.

Electrochemical noise data is typically analyzed using
statisticalmethods, power spectral density analysis, and time-
domain or frequency-domain techniques. These analyses
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provide insights into electrochemical processes, revealing
information such as corrosion rates, localized corrosion
events, and the effectiveness of corrosion protection mecha-
nisms.

Experiments are often conducted under various condi-
tions, including temperature variations, electrolyte compo-
sition changes, and the presence of inhibitors, to assess their
impact on electrochemical behavior. To validate and quantify
intrinsic noise, control voltage measurements are performed
without the battery.

SoC Estimation

Martemianov et al. [45] present promising results regarding
the application of ENA for in situ diagnostics of commercial
LIB. The primary focus of this study is the methodology of
ENA for monitoring commercial LIB. The researchers mea-
sure the standard deviation of noise signals across different
SoC levels, demonstrating good reproducibility of results.

SoH Estimation

In the same study [45], preliminary results were obtained for
battery SoH monitoring using ENA.

However, the accuracy of SoH estimation using this
method remains limited. Specifically, the noise signal curve
for an aged battery falls below that of a fresh battery between
95% and 60% SoC, but rises above it between 60% and 15%
SoC.

The observed differences in aging effects at high and low
SoC may be related to the dominance of different underly-
ing mechanisms (electrochemical vs. transport phenomena).
However, further research is required to confirm these find-
ings and refine the method for improved SoH estimation.

Results and Deepening

Martemianov et al. [45] provide an in-depth analysis of this
method and its application to LIBs. Xia et al. [46] detail the
experimental setup and methodology.

Gas Chromatography

Method

GC is a technique used to separate and analyze gas compo-
nents based on their differential interactions with a stationary
phase (typically a coated column) and a mobile phase (an
inert gas carrier).

The process begins by injecting the sample gas mixture
into the GC system. As the sample passes through the chro-
matographic column, individual gas components separate
based on their partitioning between the stationary andmobile

phases. The separated components are then detected and
quantified using various detectors, such as a flame ioniza-
tion detector or a thermal conductivity detector.

The analysis focuses on identifying gases produced during
battery operation, such as electrolyte decomposition products
or side-reaction by-products. Liu et al. [47] provide a com-
prehensive review of the process and advanced techniques
used in battery research.

Experimental Protocol

Materials for a GC experiment in battery analysis include
the battery under investigation, a gas-tight sample collection
system, a gas chromatograph instrument, a chromatographic
column suitable for gas separation, a carrier gas, and a detec-
tor. The sample collection system must be designed to safely
capture gases released during battery operation.

The chromatographic column facilitates gas separation,
and the detector records signals corresponding to each gas
component as it elutes from the column. Common detec-
tors used in battery analysis include thermal conductivity
detectors and flame ionization detectors. Additionally, mass
spectrometry can be coupled with GC for a more detailed
chemical analysis of individual gas components.

The resulting chromatogram provides a visual representa-
tion of the gas composition over time, enabling researchers
to identify and quantify the gases released during differ-
ent stages of battery operation. This information is crucial
for understanding the mechanisms of gas evolution, detect-
ing potential safety issues, and optimizing battery design for
enhanced performance and safety.

SoH Estimation

GC can be coupled with other analytical techniques, such as
mass spectrometry, to enhance the identification and quan-
tification of gas components [48]. This combination provides
additional insights into the chemical structure and molecular
weight of separated gas species.

As batteries degrade or experience faults, theymay release
gases such as hydrogen (H2) or carbon dioxide (CO2) due
to electrochemical reactions or physical damage. GC can be
used to analyze the composition of these gases, offering valu-
able insights into battery health.

In some cases, GC is also used to analyze electrolyte
composition, providing information about the presence of
contaminants or electrolyte degradation over time.

Results and Deepening

Rowden et al. [42] present a detailed methodology for GC
applications in battery research. Horsthemke et al. [49]
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describe an in-situ experimental protocol specifically devel-
oped for lithium-ion cells.

Secondary IonMass Spectrometry

Method

SIMS is a technique used to analyze the elemental and iso-
topic composition of battery materials by bombarding the
sample surface with a primary ion beam, typically from a
liquid metal ion source [50]. The impact of the primary ions
causes the ejection of secondary ions, which are then ana-
lyzed based on their mass-to-charge (m/z) ratio.

SIMS can be performed in imaging mode, where the ion
beam scans the sample surface to create spatial maps of ele-
ment distributions. Additionally, it can be used for depth
profiling, where sequential sputtering reveals elemental com-
position as a function of depth.

This technique is particularly useful for studying elec-
trode surfaces and solid materials within batteries, provid-
ing detailed information about the distribution of elements
and their isotopic ratios. Depth profiling further enables
researchers to track changes in material composition over
the battery’s lifecycle.

Experimental Protocol

A SIMS experiment requires battery components of inter-
est, such as electrodes or electrolytes, a SIMS instrument,
and a sample preparation system. The components are typi-
cally prepared as thin sections or surface samples to facilitate
detailed elemental analysis.

The experiment begins with sample preparation, which
may involve sectioning and polishing to ensure a flat and
uniform surface. The sample is then loaded into the SIMS
instrument, where it is bombarded with a primary ion beam,
causing the release of secondary ions from the sample sur-
face.

The mass spectrometer analyzes the ejected ions, sorting
them by mass-to-charge (m/z) ratio to determine elemental
composition. Because SIMS is highly sensitive, it provides
high-resolution elemental and isotopic data.

In battery research, SIMS is applied to various studies,
including the composition of electrode materials, ion migra-
tion within the electrolyte, and SEI formation on electrode
surfaces.

SoH Estimation

Lee et al. [51] compare various techniques, including X-ray
PhotoelectronSpectroscopy (XPS), electronmicroscopy, and
SIMS, for studying the SEI layer on graphite in full Li-ion
battery cells. The study first employs static Time of Flight

(TOF)-SIMS to assess the chemical homogeneity* of anode
surfaces. Two batteries with different levels of degradation
are analyzed:

1. A nearly unused cell
2. Aheavily cycled cell that underwent 495 cycles (0%-50%

SoC) and an additional 1317 cycles (50%-100% SoC) at
45°C

Results demonstrate the appearance of Mn+ and Na+
during battery cycling, likely due to cathode dissolution.
Additionally, the presence of Na insertion may be indica-
tive of cycle-induced contamination [52]. Surface scanning
further confirms uniform Na+ contamination across cells.

Dynamic SIMS is then used to analyze SEI composition at
different depths, allowing researchers to estimate SEI thick-
ness and correlate it with capacity fade. The analysis reveals
that (C2H2)nLi+ species play a key role in SEI formation,
likely originating from vinylene carbonate decomposition
into lithiated polyacetylene, as suggested by Ota et al. [53].
To further validate SEI thickness variations, complementary
XPS studies are recommended to provide additional chemi-
cal insights.

Results and Deepening

The review of Lombardo et al. [54] describes the SIMS best
practices and limitations for various batteries while Zhou
et al. [50] provide an in-depth explanation for LIBs.

Electrochimical Mass Spectrometry

Method

MS is an analytical technique used to identify and quantify
the chemical composition of samples by measuring the m/z
ratios of ions. In battery research, MS is employed to study
gas emissions, electrolyte degradation, and material compo-
sition [55].

The sample is ionized using various techniques depending
on its nature, including electron impact, electrospray ion-
ization, or matrix-assisted laser desorption/ionization [56].
Once ionized, the generated ions are separated based on
their m/z ratios using a mass analyzer, such as a quadrupole,
TOF, or magnetic sector analyzer. The analyzer filters ions,
allowing only those with specific m/z ratios to pass while
eliminating others.

The separated ions are then detected by aFaraday cupor an
electronmultiplier, generating electrical signals proportional
to ion abundance. This process provides quantitative insights
into the chemical composition of battery components and
helps track degradation mechanisms over time.
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Experimental Protocol

Materials for a MS experiment in battery analysis include
the battery components of interest, such as electrodes, elec-
trolytes, and other relevant materials. Sample preparation
typically involves techniques like liquid chromatography or
GC to separate different species before mass analysis.

The experiment beginswith introducing the prepared sam-
ple into the mass spectrometer. Depending on the specific
instrument, different ionization techniquesmay be used, such
as electrospray ionization or matrix-assisted laser desorp-
tion/ionization, to convert the sample into ionized species.
Once ionized, the ions are accelerated and separated based
on their m/z ratios within the mass analyzer.

The detector records ion abundance, generating a mass
spectrum that provides information on the individual chem-
ical components present in the sample. By interpreting the
mass spectrum, researchers can identify the composition of
battery materials and analyze chemical changes occurring
during electrochemical processes.

Mass spectrometry is applied in battery research to investi-
gate electrolyte degradation products, additive performance,
and gas evolution mechanisms during battery operation.
Isotope labeling techniques further enhance insights into
reaction pathways and degradation mechanisms.

SoH Estimation

MSand SIMS are both essential analytical tools for assessing
SoH in LIBs. These techniques provide critical insights into
the chemical composition of battery components, aiding in
the evaluation of battery performance and durability.

MS employs various ionization techniques, to generate
ions from battery components. These techniques are suited
for analyzing the electrolytes and solid battery materials.
SIMS involves bombarding the surface of battery compo-
nents with a primary ion beam, typically sourced from a
liquid metal ion source. This process causes desorption and
sputtering of secondary ions from the solid surface of the
components.

Results and Deepening

The review of Rowden et al. [42] provides details about MS,
the uses, limitations and advantages. Herl et al. [57] describes
the protocol and experimental design of MS.

Spectroscopic Methods

Spectroscopic methods are instrumental in unraveling the
intricate details of battery materials and understanding their
SoC and SoH. Within this group, Raman Spectroscopy,

Laser-Induced Breakdown Spectroscopy (LIBS), Positron
Annihilation Spectroscopy (PAS), X-ray Diffraction (XRD),
X-ray Absorption Spectroscopy (XAS), and XPS emerge as
indispensable tools for the comprehensive analysis of energy
storage systems.

These spectroscopic methods explore the intricacies of
battery materials at multiple levels, from the atomic and
crystallographic scale to the molecular and chemical compo-
sition level. This wealth of information aids in battery design,
optimization, and diagnostics for applications ranging from
consumer electronics to renewable energy systems.

Raman Spectroscopy

Method

Raman Spectroscopy operates by directing amonochromatic
laser beam onto the sample. Upon interaction with the mate-
rial, most of the scattered light undergoes elastic (Rayleigh)
scattering, maintaining the same energy as the incident laser.
However, a small fraction of the light experiences inelastic
(Raman) scattering, where its energy shifts due to molecular
vibrations and rotations.

The Raman scattered light encodes valuable information
about the molecular bonds and vibrational modes present in
the sample. The resulting Raman spectrum is then analyzed
and compared to reference databases to identify the molecu-
lar components and their structural characteristics [58].

Experimental Protocol

A Raman Spectroscopy experiment in battery analysis
requires the battery components of interest, such as elec-
trodes, electrolytes, and separator materials. Samples may
take various forms, including powders, thin films, or even
intact battery cells.

One of the advantages of Raman Spectroscopy is its non-
destructive nature, requiring minimal sample preparation.
The experiment begins by illuminating the sample with a
laser beam, which interacts with the material, generating
inelastic scattering and producing a Raman spectrum.

The collected Raman spectrum is analyzed to identify
molecular species and gain insights into structural charac-
teristics. This technique is particularly effective in studying
carbonaceous materials, such as graphite electrodes, and
detecting the formation of SEI on electrode surfaces.

SoH Estimation

According to the works of Lin et al. [59], Raman spec-
troscopy has given rise to the following methods: Spatially
Offset Raman Spectroscopy [60], Tip-Enhanced Raman
Spectroscopy [61], Surface-Enhanced Raman Spectroscopy
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[62], XRD and Atomic Force Microscopy (AFM). Many
of these methods have been discussed in other sections of
this paper. Each technique provides crucial insights into bat-
tery component evolution, such as electrode and electrolyte
behavior throughout charge–discharge cycles. Together, they
significantly contribute to SoH monitoring and degradation
analysis.

Results and Deepening

Flores et al. [63] propose an advanced in situ and operando
Raman spectroscopy method, enhancing real-time monitor-
ing of electrochemical reactions. Fredi et al. [64] investigate
the graphitic microstructure of LIBs, demonstrating how
Raman Spectroscopy enables detailed structural analysis.

Laser-Induced Breakdown Spectroscopy

Method

LIBS is a powerful technique used to analyze the elemental
composition of battery materials. In this method, a high-
energy laser pulse is focused onto the sample surface, causing
rapid heating and vaporization of the material [65, 66]. This
process generates a plasmaplumecomposedof ionized atoms
and ions.

As the excited atoms and ions return to their ground state,
the plasma emits characteristic light (emission spectra). This
emitted light is collected and analyzed using a spectrometer,
which separates different wavelengths of light. By compar-
ing the obtained spectral data with known elemental spectral
signatures, researchers can identify and quantify specific ele-
ments within the battery sample.

Experimental Protocol

ALIBS experiment requires the battery components of inter-
est, such as electrodes and electrolytes. Samples may be
in various forms, including powders, thin films, or solid
materials. Sample preparation ensures that the surface is
representative and well-exposed for laser-induced plasma
generation.

The experiment beginswith applying a focused laser pulse
onto the sample surface. This intense laser pulse ablates the
material, creating a plasma plume that emits characteristic
light. The emitted spectral lines correspond to the elemental
composition of the sample and are collected and analyzed
using a spectrometer.

The recorded LIBS spectrum provides real-time informa-
tion about the presence and concentration of elements within
the battery materials. LIBS is particularly advantageous for
simultaneously detecting multiple elements with high preci-

sion. The technique consists of three primary components:
laser excitation, light detection, and analytical processing.

SoC Estimation

Smyrek et al. [66] demonstrate that LIBS enables rapid
elemental characterization of LIBs. A single laser pulse in
ambient air is sufficient to assign a local SoC, offering a non-
intrusive, qualitative, and quantitative approach to elemental
analysis.

LIBS was used as a characterization method to determine
the elemental composition of Li(NiMnCo)O2 cathodes at
various SoC levels, confirming its effectiveness for real-time
state-of-charge estimation.

SoH Estimation

Researchers found that laser-calendered or laser-structured
Li(NiMnCo)O2 cathodes exhibited lower discharge capaci-
ties than purely calendered or structured cathodes.

The findings suggest that the LIBS method could be used
to improve SoH assessment by analyzing cathode modifica-
tions and their impact on battery performance.

Results and Deepening

Pamu et al. [67] expose a calibration-free LIBS method, pro-
tocol and experimental design for LIBs. Smyrek et al. [68]
describe the LIBS method for various electrodes.

Positron Annihilation Spectroscopy

Method

PAS is a technique that analyzes defects and electronic envi-
ronments in materials by measuring the interaction between
positrons (the antiparticles of electrons) and electrons. A
positron source emits positrons into the material under
investigation, where they eventually encounter electrons and
undergo annihilation, producing gamma-ray emissions.

The characteristics of the annihilation process depend
on the electronic environment and the presence of defects
in the material. Doppler broadening analysis, a commonly
used PAS technique, provides information about themomen-
tum distribution of electrons, allowing researchers to identify
vacancies and lattice defects [69].

Experimental Protocol

A PAS experiment requires battery components of interest,
such as electrodes and electrolytes. Samples can be in vari-
ous forms, including powders, thin films, or structured solid
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materials. Sample preparation ensures a geometry compati-
ble with positron annihilation measurements.

The experiment begins with positron injection into the
sample. These positively charged antimatter particles pene-
trate the material and interact with electrons. Upon annihi-
lation, gamma-ray photons are emitted, and their detection
provides insights into defect structures and electron den-
sity [69].

PAS is particularly sensitive to vacancy-type defects, dis-
locations, and lattice irregularities. In battery research, it is
used to study electrode material degradation, defect concen-
tration changes during cycling, and the long-term structural
stability of cathodes and anodes. While PAS is less com-
mon than other spectroscopic methods in battery studies,
its unique sensitivity to defects makes it a valuable tool for
analyzing the structural and electronic properties of battery
materials.

SoC Estimation

According to Pagot et al. [69], PASprovides valuable insights
into the lithiation state of LiCoO2 thin films used in cathodes
of LIBs.

Positron lifetime analysis offers a two-fold insight: Initial
positron lifetimes reflect the cathode’s charge state; Later
positron interactions provide information about surface con-
ditions at grain-graphite junctions.

These findings demonstrate the potential of PAS as a non-
invasive technique for monitoring cathode lithiation in LIBs.

SoH Estimation

The study also found that discharge capacities for laser-
calendered and structured Li(NiMnCo)O2 cathodes were
lower than those of purely calendered or structured cathodes.

Akey aspect in understanding cathodemicrostructure evo-
lution during operation is the influence of grain boundaries
and internal grain properties. The presence of graphite in
proximity to these structures appears to impact grain potential
energy, which in turn affects the cathodic oxide’s character-
istics, including positron lifetime measurements.

Barbiallini et al. [70] use PAS to determine electron-
positron correlations, predicting that this method can track
lithium intercalation effects in oxide cathodes.

However, interpreting PAS lifetime data for materials like
LiFePO4 and LiCoO2 remains challenging due to their com-
plex microstructures [71, 72]. To address this, researchers
suggest combining PAS with complementary techniques,
such as soft and hard X-ray analysis, to gain a more com-
prehensive understanding of battery aging and degradation.

Another study [75] proposes using PAS to monitor lithia-
tion and delithiation processes inLiFePO4 cathodes, employ-

ing gradient correction approaches to improve measurement
accuracy.

Results and Deepening

Pagot et al. [69] describes the PAS method adapted to LIBs.
Many studies use PAS to various electrolyte systems but can-
not be exposed individually in this section.

X-ray Diffraction Spectroscopy

Method

XRD is a widely used technique for analyzing the crys-
tal structure and composition of materials, including battery
electrodes and active materials. It provides valuable insights
into the structural state and transformations occurring in bat-
tery components [76].

XRD works by exposing a sample to an X-ray beam and
measuring the diffraction pattern produced by X-ray inter-
actions with the crystal lattice. The resulting pattern reveals
information about atomic arrangements, lattice spacing, crys-
tallographic phases, and crystal size. By analyzing changes
in diffraction patterns, researchers can track structural mod-
ifications in battery materials over time.

Experimental Protocol

Battery components such as electrodes and electrolytes are
commonly analyzed using XRD. Samples are typically pre-
pared as finely powdered materials, thin films, or other
configurations suitable for X-ray analysis. The preparation
process ensures uniformity and random crystallite orienta-
tion, which is critical for obtaining reliable diffraction data.

During the experiment, the prepared sample is exposed to
an X-ray beam. The incident X-rays interact with the crystal
lattice, producing constructive and destructive interference
that forms a diffraction pattern. A detector captures this pat-
tern, and the resulting data is analyzed to extract crystal
structure, lattice parameters, and phase composition infor-
mation.

XRD is commonly employed to identify the crystalline
phases of electrode materials and monitor structural changes
during charge–discharge cycles. It is particularly useful for
studying the formation and degradation of SEI on elec-
trode surfaces. Analytical methods such as Rietveld refine-
ment [77] and patternmatching [78] are often used to identify
crystalline phases and quantify their relative abundances.

SoC Estimation

According to Bartsch et al. [79], both ex situ and operando
XRD techniques can be used to determine the SoC of semi-
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conductor batteries. Using XRD data collected from a liquid
electrolyte lithium-ion cell, researchers established a corre-
lation between cathode lithiation/delithiation levels and SoC.

The study employed synchrotron-based operando trans-
mission XRD and ex situ XRD to analyze cathode material
transformations during charging and discharging cycles. As
lithium content fluctuates within the cathode, its crystalline
structure changes, affecting the battery’s SoC.

XRD provides several advantages for SoC monitoring,
as it is non-destructive and enables real-time observation of
crystalline structural changes. In addition to SoC estimation,
the same study concluded that XRD could also identify inac-
tive electrochemical electrodes, making it a valuable tool for
assessing the SoHof batteries. This application is particularly
relevant for developing advanced cathode composites.

SoH Estimation

According to Balasubramanian et al. [80], XRD is a power-
ful method for evaluating the SoH of LIBs. The technique
provides high-quality diffraction patterns, allowing for in-
depth analysis of cathode materials and graphite reflections
in the anode. The presence of relaxation processes in the
cathode-which persist for several minutes after charging-was
confirmed using XRD.

To obtain a comprehensive understanding of battery
degradation, XRD should be complemented with other
characterization techniques. Scanning Electron Microscopy
Imaging (SEM), Transmission electron microscopy (TEM),
and spectroscopic methods such as XPS can provide addi-
tional structural and chemical insights.

Results and Deepening

Li et al. [81] and Bak et al. [82] provide in-depth details on
X-ray methods on LIBs.

X-ray Absorption Spectroscopy

Method

XAS is a powerful characterization technique used to inves-
tigate the chemical and electronic structure of battery mate-
rials. It provides critical insights into the local coordination
environment and oxidation states of elements within battery
components [83, 84].

XAS operates by exposing a sample to X-rays and mea-
suring the absorption spectrum as a function of energy. It
is typically conducted at synchrotron radiation facilities,
which provide intense, tunable X-ray beams. The two pri-
mary types of XAS include X-ray Absorption Near-Edge
Structure (XANES) [85] and Extended X-ray Absorption
Fine Structure (EXAFS) [86], both of which offer detailed

information about the electronic and structural environment
of elements.

Successful XAS experiments require careful sample
preparation, such as thin-film deposition, powder synthe-
sis, or electrodeposition, to ensure compatibility with the
experimental setup. Advanced data analysis techniques,
including theoretical modeling, Fourier transform analysis,
and simulation-based fitting, are crucial for extracting mean-
ingful information from XAS spectra.

Experimental Protocol

Battery components such as electrodes, electrolytes, and sep-
aratormaterials are commonly analyzed usingXAS. Samples
can be prepared in various forms, including powders, thin
films, or other geometries compatible with X-ray absorption
measurements. Proper sample preparation ensures accuracy
and reproducibility in spectral analysis.

The experiment begins by exposing the sample to mono-
chromatic X-rays, which are tuned to the absorption edge
of a specific element of interest. When the X-rays interact
with the material, they excite inner-shell electrons, leading
to element-specific absorption features in the recorded spec-
trum. The intensity of transmitted X-rays is measured as a
function of energy, producing a spectrum that reveals details
about the local atomic environment of the probed element.

XAS is widely used to study oxidation states in transi-
tion metal electrode materials, monitor electronic structure
changes during charge–discharge cycles, and investigate ele-
mental behavior in electrolytes and SEI. Its ability to analyze
local coordination environments in complexmaterials makes
it particularly valuable for understanding battery degradation
mechanisms.

Data analysis in XAS involves comparing experimental
spectra with reference spectra and applying theoretical mod-
els to extract quantitative structural information. EXAFS
analysis [87] is particularly useful for determining bond dis-
tances, coordination numbers, and structural disorder within
battery materials.

SoH Estimation

The XAS method plays a significant role in assessing the
SoH of LIBs by tracking changes in the chemical structure of
electrodes and battery materials over time. It is particularly
effective in detecting variations in the oxidation states of
elements in electrode materials.

As batteries undergo repeated charge and discharge
cycles, chemical transformations occur in the active mate-
rials. XAS enables researchers to identify and quantify these
changes, providing crucial insights into battery degradation
and aging mechanisms [80]. However, it is important to note
that XAS is primarily used for ex-situ analyses, meaning that
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it is often conducted on battery samples removed from the
operational system rather than in real-time.

Despite this limitation, XAS remains a highly effective
tool for diagnosing long-term material stability, helping to
optimize battery performance and extend cycle life.

Results and Deepening

Li et al. [81] and Bak et al. [82] provide in-depth details on
X-ray methods on LIBs.

X-ray Photoelectron Spectroscopy

Method

XPS, also known as Electron Spectroscopy for Chemical
Analysis (ESCA), is a surface-sensitive technique used to
investigate the elemental composition, chemical states, and
electronic properties of materials, including battery compo-
nents [88].

TheXPS process beginswithX-ray irradiation of the sam-
ple, which causes the ejection of photoelectrons from its
surface. These emitted photoelectrons are energy-analyzed
using a spectrometer, allowing the determination of the
binding energy of each element present in the sample. Addi-
tionally, chemical states are identified based on shifts in peak
positions and spectral features, providing crucial insights into
oxidation states, chemical bonding, and surface composition.

Experimental Protocol

Battery components such as electrodes, electrolytes, and sep-
arator materials are commonly analyzed using XPS. The
sample is typically prepared as a thin film or other configura-
tions suitable for surface analysis. Proper sample preparation
is essential, often requiring sputtering or ion milling to
remove surface contaminants and obtain a well-defined sur-
face for analysis.

The experiment begins with irradiating the sample with
X-rays, leading to photoelectron ejection from the surface
material. The kinetic energy and intensity of the emitted elec-
trons are measured, yielding detailed information about the
elemental composition and chemical states of the material.

XPS is particularly effective for studying the oxidation
states of elements in electrode materials, identifying sur-
face contaminants, and tracking chemical changes at the
electrode-electrolyte interface. It provides valuable insights
into the formation and evolution of the SEI on electrode sur-
faces.

Data analysis in XPS involves deconvoluting spectral
peaks corresponding to different elements and chemical
states. The binding energies of photoelectrons offer precise
information about chemical environments and oxidation state

variations, making XPS a powerful tool for monitoring redox
reactions in battery materials.

SoH Estimation

Previous studies on the SEI layer in complete lithium-ion
battery cells employed XPS, electron microscopy, and SIMS
to analyze interfacial composition changes [51].

Comprehensive XPS studies are necessary to assess vari-
ations in the relative thickness of the SEI layer over time.
It is important to note that XPS requires a longer spectral
accumulation time compared to SIMS, meaning that analy-
ses can only be performed once a certain electrode thickness
is achieved.

In one study, XPS revealed concentration profiles of flu-
orine atoms within battery sample [51]. A major F1s peak
at 686 eV confirmed that LiF is a primary component of
the SEI, a finding consistent with earlier work by Zheng et
al. [89]. While Mn was absent at the surface, XPS depth pro-
filing revealed strong correlations between Mn distribution
and the SEI structure prior to graphite peak emergence.

Another study by Andersson et al. [90] demonstrated that
the chemical composition of the SEI layer correlates with
the high-temperature performance of Li/graphite half-cells.
This finding highlights the influence of temperature on the
SEI layer, emphasizing its role in battery degradation and
SoH assessment.

While XPS effectively tracks surface chemical changes
over time, it does not provide direct information about a
battery’s overall SoH, such as capacity retention, residual
lifespan, or energy delivery reliability. To fully evaluate bat-
tery degradation and longevity, electrochemical testing and
performance-based analyses should be conducted alongside
XPS studies.

Results and Deepening

Li et al. [81] and Bak et al. [82] provide in-depth details on
X-ray methods on LIBs.

Imaging andMicroscopyMethods

The field of battery SoC and SoH estimation has witnessed
a remarkable evolution with the integration of advanced
imaging and microscopy techniques. These cutting-edge
methods provide unique insights into the internal structures
and processes of batteries, enabling a deeper understanding
of their performance and degradation mechanisms. Imaging
and microscopy methods, including Neutron Imaging, X-ray
Microscopy Imaging (XRM), Magnetic Resonance Imaging
(MRI) and AFM are detailed. These techniques offer a win-
dow into the intricate world of battery materials and offer the
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potential for enhanced accuracy in assessing and managing
the SoC and SoH of energy storage systems.

Neutron Imaging

Method

Neutron imaging is a non-destructive technique that utilizes
neutrons to probe the internal structure and composition
of materials, including battery components [91, 92]. This
method provides valuable insights into element distribution,
moisture content, and structural changes within batteries.

The process involves interactions between neutrons and
the sample, followed by detection and visualization of trans-
mitted or scattered neutrons. Two primary techniques are
employed:

• NeutronRadiography: Thismethod captures the attenu-
ation of neutrons as they pass through the battery sample.
The intensity of the transmitted neutrons is recorded,
forming a 2D image that reveals internal structures, den-
sity variations, and element distribution.

• Neutron Tomography: This technique combines mul-
tiple radiographic projections from different angles to
reconstruct a 3D image of the battery sample. By acquir-
ing a series of 2D images at different rotation angles,
researchers can visualize the internal structure and spa-
tial distribution of materials in three dimensions.

For successful neutron imaging, sample containers and
holders must be carefully designed to minimize neutron
attenuation and ensure proper positioning. Additionally, neu-
tron imaging should be combinedwith other characterization
techniques, such as XRM, electron microscopy, or spec-
troscopy, to obtain a more comprehensive understanding
of battery materials and their behavior. Integrating multiple
techniques enhances the accuracy of battery assessments.

Experimental Protocol

A neutron imaging experiment in battery analysis requires
a fully assembled battery cell, including electrodes, elec-
trolytes, separators, and other relevant components. No
extensive sample preparation is needed, as neutron imaging
is a non-destructive technique that allows intact battery cells
to be examined directly.

The experiment involves exposing the battery cell to a
beam of neutrons. Since neutrons interact differently with
various elements, the resulting contrast in the image pro-
vides insights into internal battery structures. This method is
particularly sensitive to light elements like hydrogen,making
it suitable for studying materials that are difficult to image
with traditional techniques.

Neutron imaging is highly effective in analyzing elec-
trolyte distribution within electrodes, tracking gas pocket
evolution, and observing electrode morphology changes dur-
ing charge–discharge cycles. It is particularly valuable for
non-destructively investigating electrolyte filling, electrode
swelling, and structural modifications under different opera-
tional conditions.

The acquired neutron images are analyzed to extract data
on spatial distribution, density, and material composition
within the battery. Advanced data processing techniques
allow for 3D reconstructions, providing a detailed visual-
ization of internal battery structures.

SoC Estimation

According to Senyshyn et al. [93], neutron imaging has been
used to analyze the crystalline structure evolution of LIBs
based on their SoC and SoH. Using Rietveld’s refinement
technique, researchers examined neutron radiography data
and tomographic reconstructions, revealing the local neutron
absorption density-a parameter that primarily reflects lithium
distribution and battery design details.

Through this study, neutron imaging has been successfully
applied to evaluate neutron absorption contrast as a function
of SoC and SoH, providing a non-invasive approach to mon-
itoring battery charge levels.

SoH Estimation

In another study, Song et al. [94] used neutron radiography
tomonitor lithium dendrite growth in real-time. The research
demonstrated that short circuits in LIBs are primarily caused
by lithium dendrite growth.

By employing neutron imaging, researchers visualized
dendrite formation and tracked its progression over time,
allowing for a detailed analysis of this aging mechanism.
This study confirmed that neutron imaging is a powerful tool
for identifying lithium accumulation and dendritic growth,
which are major contributors to battery degradation and fail-
ure.

Results and Deepening

Kardjilov et al. [91] discuss the latest advancements in
neutron imaging, highlighting its capabilities in battery
diagnostics and beyond. Gao et al. [95] explore various appli-
cations of neutron imaging for lithium-ion battery analysis,
demonstrating its potential in assessing internal battery struc-
tures and degradation mechanisms.
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X-ray Microscopy Imaging

Method

XRM is an imaging technique that utilizes X-rays to produce
high-resolution 2D or 3D images of the internal structure
of materials, including batteries. It is particularly useful for
observing the distribution of phases, pores, cracks, and other
structural features inside a battery, providing critical insights
into morphology and spatial distribution of battery compo-
nents.

Twocommonlyused techniques inXRMareTransmission
X-ray microscopy (TXM) [96] and Scanning transmission
X-ray microscopy (STXM) [97], both of which enable
nanoscale analysis of battery structures and compositions.

In TXM, a broad X-ray beam is transmitted through a thin
sample, anddifferences inX-ray absorptionbasedon electron
density and chemical composition are recorded. A detector
captures the transmitted X-rays, allowing for the reconstruc-
tion of 2D or 3D images that reveal internal structures at the
nanoscale.

In STXM, a highly focused X-ray beam scans a small
region of the sample with sub-micrometer spatial resolution.
The intensity of transmitted X-rays at each scanned point
is measured, generating detailed images with extremely high
spatial resolution. This technique also enables chemicalmap-
ping by analyzing X-ray absorption at different locations
within the sample.

The primary difference between TXM and STXMlies in
howX-rays interactwith the sample. TXMuses a broad beam
to capture the entire sample, whereas STXM scans small
regions with a focused beam. Both techniques are essen-
tial for analyzing battery materials, as they provide detailed
insights into lithium distribution (SoC) and electrode degra-
dation (SoH).

Experimental Protocol

A XRM experiment for battery analysis requires a fully
assembled battery cell, including electrodes, electrolytes,
separators, and other internal components. Since XRM is
a non-destructive imaging technique, no extensive sample
preparation is required.

The experiment involves exposing the battery cell to
X-rays with short wavelengths. These high-energy X-rays
penetrate the sample, and interactions such as absorption and
phase contrast are detected to generate highly detailed images
of the internal structure. The technique provides micrometer-
to-nanometer spatial resolution, making it particularly useful
for examining fine features within battery components.

XRMcan be applied to observe electrodemicrostructures,
track active material distribution, and analyze electrode-
electrolyte interfaces. It is especially useful for monitoring

morphological changes during charge–discharge cycles, as
well as studying dendrite growth and electrolyte penetration.

The recordedX-raymicroscopy images undergo advanced
processing and analysis to extract quantitative data on inter-
nal structural features. Tomography techniques allow for full
3D reconstructions, offering a comprehensive visualization
of battery architecture.

SoC Estimation

Using TXM, researchers can examine cathodes and anodes
in LIBs to observe how lithium species distribution evolves
during charging and discharging [98]. Cathode materials, for
instance, typically contain lithium when charged and release
it upon discharge. By analyzing electron density changes in
cathode materials throughout charge–discharge cycles, SoC
can be inferred.

STXM provides even higher spatial resolution, allow-
ing for precise tracking of lithium at the nanoscale within
electrodes. This capability is crucial for analyzing localized
lithium concentration variations, making it a powerful tool
for high-precision SoC estimation.

SoH Estimation

TXM is widely used for monitoring electrode integrity and
internal degradation phenomena [98]. Researchers can assess
the formation of deposits (such as lithiumdendrites),material
degradation, and microstructural changes that impact battery
performance.

With its exceptional spatial resolution, STXM enables the
detection of subtle chemical and structural changes in bat-
tery materials, such as variations in crystalline structure or
chemical composition at the nanoscale. By tracking these
early degradation indicators, STXM provides a highly accu-
rate assessment of a battery’s SoH before significant capacity
loss occurs.

Results and Deepening

Li et al. [81] and Bak et al. [82] provide in-depth details on
X-ray methods on LIBs.

X-ray Computed Tomography

Method

X-ray Computed Tomography (X-ray CT) is a 3D imaging
technique widely used for industrial inspection and battery
analysis. It allows researchers to reconstruct the internal
structure of a sample non-destructively by scanning X-ray
signals at various rotation angles [99].
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Using the inverse Radon transform, 2D slice images of
the scanned material are reconstructed, which can then be
stacked to generate a complete 3D representation of the sam-
ple [100].

The limitations of conventional X-ray CT can be reduced
by using synchrotron X-rays, which are highly intense
and produce stronger transmitted signals. This enhancement
increases imaging speed and allows for advanced model-
ing approaches, such as 4D (3D + time) and 5D (3D +
time + energy) imaging. For example, research on lithium-
sulfur batteries has employed 4D imaging to track cathode
microstructure evolution [101].

As Deng et al. [99] highlight, X-ray CT is not limited to
characterizing battery microstructure and morphology. The
volumetric data obtained from imaging can also be used
for real 3D computational modeling of LIBs. For example,
Bronte et al. [102] developed a 5D computational model
by integrating energy and time components into a 3D X-
ray CT dataset. Another 5D imaging method (3D + time +
diffraction) has been applied in X-ray diffraction tomogra-
phy, enabling non-destructive crystallographic mapping of
battery electrode materials [103].

Experimental Protocol

A typical X-ray CT experiment for battery analysis requires
an assembled battery cell, which includes electrodes, elec-
trolytes, separators, and additional relevant components.
Since X-ray CT is non-destructive, no special sample prepa-
ration is required for the imaging process.

The experiment begins by placing the battery cell inside
theX-rayCTsystem.X-rays are transmitted through the sam-
ple frommultiple angles, and detectors measure the intensity
of the transmitted X-rays at each angle. The collected data
is then processed using computational algorithms to recon-
struct a detailed 3D image of the internal battery structure.

X-ray CT is particularly valuable for examining the spa-
tial distribution of electrode materials, identifying porosity
and voids, and analyzing electrode-electrolyte interfaces. It
also provides insights into how cycling affects the internal
structure of a battery over time, making it an essential tool
for understanding structural degradation mechanisms.

The reconstructed 3D images allow for advanced quanti-
tative analysis, including electrode porosity measurements,
active material distribution, and long-term structural evolu-
tion of battery components.

SoC Estimation

Yu et al. [104] combined spectro-tomography and soft X-
ray ptychographic imaging to determine the 3D morphology
and oxidation states of metal cations in lithium-iron phos-
phate (LiFePO4) cathode nanoparticles. By analyzing a set

of LiFePO4 nanoplates extracted from a battery electrode at
50 percent SoC, the researchers investigated *the relationship
between particle size and battery SoC.

This method for determining the SoC needs further
research. The first reason is that the precise conditions that
dictate how electrochemical transformations occur within
individual particles of battery electrodes are still widely
debated within the scientific community. The second reason
is that the actual resolution is imprecise because Fourier Shell
Correlation [105] reduces the signal-to-noise ratio of the data
by a factor of two at all spatial frequencies. Lastly, the third
reason could be that a portion of the electrode exhibits either
a carbon deficiency or inadequate electrolyte wetting, which
could lead to transport deficiencies that delay their reaction.

SoH Estimation

In the context of LIBs, 3D imaging enables researchers to
investigate degradation mechanisms by mapping material
morphology and composition across different size scales-
from micrometers to nanometers.

One crucial factor in battery degradation is critical cur-
rent density, which influences short-circuit behavior in solid
electrolytes. Shen et al. [106] examined the effect of crit-
ical current density on structural transformations in solid
electrolytes. Their findings revealed that the likelihood of
short-circuit formation is inversely proportional to the evo-
lution of interconnected pores, suggesting that pore structure
plays a key role in electrolyte failure.

Additionally, Dixit et al. [107] demonstrated that elec-
trolytes with highly anisotropic tortuosity tend to have lower
critical current densities, making them more prone to degra-
dation.

Another major aspect of battery SoH degradation is
electrode deterioration. Singer et al. [108] focused on under-
standing the nucleation of mobile dislocation networks in
lithium-rich layered oxide nanoparticles. Their study sug-
gested that usingLLZO (lithium lanthanumzirconiumoxide)
as a cathode material in next-generation LIBs could enhance
voltage management, making it a promising candidate for
improving battery SoH and lifespan.

Results and Deepening

Li et al. [81] and Bak et al. [82] provide in-depth details on
X-ray methods on LIBs.

Magnetic Resonance Imaging

Methods

MRI is a non-invasive imaging technique that utilizes strong
magnetic fields and radio waves to generate detailed images
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of internal structures and material composition. In battery
research, MRI is used to analyze internal characteristics,
monitor SoH, and investigate electrochemical phenomena
within battery cells [109, 110].

The MRI process involves subjecting the battery to a
strong static magnetic field while applying radiofrequency
pulses, which stimulate atomic nuclei (such as hydrogen or
lithium) within the battery materials. The nuclei then emit
electromagnetic signals, which are detected and processed
to construct high-resolution images. The choice of targeted
nuclei depends on specific research objectives, enabling
researchers to study different aspects of battery composition
and behavior.

Future advancements in MRI aim to improve imaging
resolution and speed, particularly through stronger mag-
netic fields. MRI is already a powerful tool for studying
lithium-ion systems and electrochemical processes, and fur-
ther development of UV/visible/IR imaging techniques-such
as in-situ cell monitoring, laser scanning methods, and ther-
mal imaging-continues to enhance battery diagnostics [111].

Additionally, advanced image reconstruction and post-
processing algorithms are improving data accuracy by reduc-
ing artifacts and enhancing quantitative analysis. Combining
MRIwith complementary imaging techniques, such as X-ray
imaging and electrochemical analysis, provides a more com-
prehensive assessment of battery health and performance.

Experimental Protocol

A typical MRI experiment in battery analysis requires a fully
assembled battery cell, including electrodes, electrolytes,
separators, and other key components. While MRI is non-
destructive, specific sample preparation may be necessary to
ensure compatibility with the MRI setup. For instance, the
battery may need to be placed in a non-magnetic holder to
prevent interference with the strong magnetic fields.

The experiment begins by exposing the battery to a
strong external magnetic field, aligning the nuclear magnetic
moments of specific atomic nuclei (e.g., lithium, hydrogen,
or sodium). Radiofrequency pulses are then applied, caus-
ing the nuclei to absorb and reemit energy. These emitted
signals are detected and processed using computer algo-
rithms to construct detailed images of the battery’s internal
structure, revealing information about material composition,
electrolyte distribution, and electrode behavior.

MRI is particularly useful for visualizing liquid-phase
components, mapping electrolyte concentration gradients,
and tracking material changes during charge–discharge
cycles. The resulting images provide valuable spatial infor-
mation, allowing researchers to study how different compo-
nents interact within the battery system over time.

SoC Estimation

MRIproduces amapof spatial nuclear spin density, obtaining
a spatial image by reconstructing the acquired signals [112,
113]. Ilott et al. [114] use a 2DMRImodel to determine SoC.
They demonstrate a relevant correlation between a magnetic
field and the SoC of a battery.

SoH Estimation

MRI is widely used to monitor internal battery processes,
offering key advantages over other imaging techniques.
Unlike traditional imagingmethods,MRI resolution depends
on the shift in additional magnetic field gradients, which
allows it to detect real-time changes occurring within bat-
tery materials [115, 116].

The foundations of nuclear magnetic resonance imag-
ing were laid by Lauterbur et al. [117], while Suits et al.
[118] later demonstrated its applicability to solid materi-
als. Subsequent studies expanded the use of MRI for battery
diagnostics, enabling detailed investigations into electrode
behavior and electrolyte dynamics.

Several studies have identified specific nuclear isotopes
(e.g., 23Na, 7Li, 1H, 19F) that can be detected via MRI,
offering insight into chemical composition changes and
degradation mechanisms [119, 120].

A notable application of MRI in SoH monitoring is its
ability to track dendrite and lithium foam formation on bat-
tery electrodes. Bhattacharyya et al. [121] conducted in-situ
lithium nuclear magnetic resonance spectroscopy experi-
ments, successfully monitoring dendrite and foam growth
on negative electrodes during battery cycling.

Dendrites form at high current densities and develop into
sharp metallic protrusions, which can puncture the separator,
leading to short circuits and thermal runaway. Lithium foam,
on the other hand, accumulates at lower current densities,
forming a dense layer of deposited lithium that gradually
increases over multiple charge–discharge cycles. Under-
standing these degradation processes is critical for improving
battery safety and longevity [122].

In another study, Ilott et al. [123] used 3D MRI models
to demonstrate that dendrite growth is not unidirectional but
follows a twisted path until it reaches a short circuit. These
findings highlight the importance of 3D imaging for real-time
SoH assessment, allowing for more accurate predictions of
battery lifespan and failure mechanisms.

Results and Deepening

Mohammadi et al. [111] expose MRI for various electro-
chemical cells. For more details on LIBs, refer to Deng et al.
[99].
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Atomic Force Microscopy

Methods

AFM is a high-resolution imaging technique that uses a
sharp probe tip attached to a cantilever to analyze the surface
properties of materials at the nanoscale. The probe interacts
with the sample surface, experiencing attractive and repulsive
forces that depend on surface morphology and composition.
As the tip moves across the surface, these interactions are
recorded, producing a detailed topographic map that pro-
vides insights into surface roughness, particle size, defects,
and film morphology.

Improving AFM for enhanced estimation of SoH in LIBs
remains an active area of research [124, 125]. Researchers
are developing:

• Specialized AFM sensors and probes tailored for battery
analysis, enabling higher spatial resolution.

• Integration with spectroscopic techniques like Raman or
infrared spectroscopy to provide chemical composition
insights.

• Nanoscale mechanical property measurements to track
changes in electrode surfaces during cycling.

• Real-time AFM analysis for in situ and operando moni-
toring of electrode degradation.

• Machine learning and artificial intelligence algorithms
for automated detection of surface changes and degrada-
tion patterns.

• Electrochemical stability improvements to ensure accu-
rate readings during AFM measurements.

By advancing these techniques, AFM is establishing itself
as a key tool for characterizing LIB health, helping develop
more reliable and long-lasting energy storage technologies.

Experimental Protocol

A typical AFM experiment for battery analysis requires elec-
trode materials, electrolyte films, or separator coatings. The
sample can be prepared in various forms, including thin films,
coatings, or polished surfaces, to ensure optimal imaging
conditions. Surface preparation is critical and often involves
techniques such as polishing, cleaving, or sputtering to create
a clean and flat sample.

The experiment begins with placing the sample onto the
AFM stage, followed by positioning the sharp probe tip near
the surface without making direct contact. As the tip moves
across the sample, interactions with the surface cause the
cantilever to deflect, and these deflections are recorded to
generate a topographic image.

AFM is particularly useful for studying electrode surfaces,
monitoring the formation of the SEI, and tracking changes in

material morphology at the nanoscale. The technique allows
researchers to examine the impact of charge–discharge
cycling on surface roughness, particle agglomeration, and
the growth of unwanted surface films.

Additionally, AFM can be combined with other analytical
techniques, such as Scanning Electrochemical Microscopy
(SECM), to gain complementary insights into electrochem-
ical processes [126].

SoH Estimation

In situAFM imaging has been successfully combinedwith ex
situ SEM to monitor battery degradation mechanisms [127].
Becker et al. [127] demonstrated that mechanical damage
accumulates during cycling in batteries containing organic
electrolytes, leading to irreversible surface modifications.

The effectiveness of AFM for studying SoH in lithium-ion
batteries has been widely validated, with numerous stud-
ies confirming its reliability for analyzing electrode aging,
mechanical wear, and surface evolution [124, 128].

Results and Deepening

Wang et al. [124] and Zhao et al. [125] provide in-depthAFM
details for LIBs.

Scanning ElectronMicroscopy Imaging

Methods

SEM utilizes a focused electron beam, typically acceler-
ated at high voltage, to interact with the sample surface.
When the beam strikes the sample, multiple interactions
occur, including elastic and inelastic scattering, secondary
electron emission, and backscattering. Secondary electrons
provide high-resolution surface topography, while backscat-
tered electrons offer compositional contrast. This technique
is widely used to analyze material morphology, composition,
and interfacial structures, making it an essential tool for opti-
mizing advanced battery systems.

In a review of imaging methods, Deng et al. [99] divide
electron microscopy techniques into two categories: TEM
and SEM. Both methods are crucial for studying the evolu-
tion of electrode materials and elucidating the energy storage
mechanisms of LIB materials at the atomic level.

However, conventional LIB electrolytes, which are typi-
cally volatile liquids, complicate lithium-ion imaging using
electron beams. A promising advancement in electronmicro-
scopy is Cryogenic Electron Microscopy (cryo-EM), a tech-
nique that operates at low temperatures andwith low electron
doses to prevent beam-induced damage.

Cryo-EM was developed by Jacques Dubochet, Joachim
Frank, and Richard Henderson, whowere awarded the Nobel
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Prize in Chemistry in 2017. Since then, highly efficient
cryo-EM systems have been developed [129, 130], enabling
researchers [131] to study lithium dendrites and the forma-
tion of the SEI.

Moreover, cryo-EM can be integrated with complemen-
tary techniques such as Energy Dispersive X-ray Spec-
troscopy, Focused Ion Beam, and Electron Energy Loss
Spectroscopy, providing a comprehensive understanding of
lithium loss and SEI deterioration mechanisms [132–136].

Experimental Protocol

A typical SEM experiment for battery analysis requires
electrode materials, electrolyte films, separators, and other
relevant components. Samples can be prepared in different
forms, including thin sections, powders, or intact battery
cells, depending on the research objectives.

Before imaging, non-conductive samples are often coated
with a thin conductive layer (e.g., gold or carbon) to enhance
image quality and reduce charging effects. The experiment
beginswith placing the prepared sample in the vacuumcham-
ber of the SEM.

A focused electron beam is then scanned across the
sample surface, generating various signals, such as sec-
ondary electrons, backscattered electrons, and characteristic
X-rays. These signals are detected and used to produce high-
resolution images that reveal surface morphology, particle
size distribution, and structural integrity.

SEM is particularly valuable for investigating electrode
microstructures, analyzing the formation of SEI, and assess-
ing material degradation over multiple charge–discharge
cycles. Its high spatial resolution allows researchers to
observe features at the nanoscale, making it a powerful tool
for studying the aging mechanisms of battery components.

SoH Estimation

Assessing changes in battery structure to determine SoH
requires careful handling of the vacuum electron beam to
avoid damaging volatile electrolytes. A key approach is
using solid-state electrolytes [137, 138] or non-volatile ionic
liquid-based electrolytes [139] to enable detailed electro-
chemical imaging without evaporation artifacts.

Several studies have successfully employed TEM and
SEM to analyze battery degradation:

• Huang et al. [140] demonstrated that the deterioration of
oxide anode materials is primarily caused by irreversible
volume expansion.

• A combined Electron Energy Loss Spectroscopy and
Scanning Transmission ElectronMicroscopy study [141]
identified insulating side-reaction products at the LiCo-

O2/LiPON interface as the primary source of interfacial
resistance.

• Chen et al. [142] used in situ TEM to study lithiummetal
deposition, providing insights into lithium plating behav-
ior.

• Electron holography was employed to analyze interface
charge distribution during lithiation in various electrode
materials, including Li4Ti5O12 [143], LiCoO2 [144], and
Ge nanowires [145].

Results and Deepening

Ul-Hamid’s book [146] is a beginner’s guide for SEM and its
applications. Wu and Liu [147] provide details about SEM
on batteries.

Mechanical Methods

This section delves into another crucial aspect of battery
investigation: mechanical methods. These methods encom-
pass two vital aspects, namely mechanical stress and ultra-
sonic testing. In a world where the reliability and durability
of LIBs are of utmost importance, understanding these two
methods and their relevance in studying SoC and SoH is
essential. This section dives into the exploration of these
methods and their impact on the optimization and mainte-
nance of LIBs.

Mechanical stress

Method

To assess the SoC and SoH of a LIB, mechanical parameters
can be used as supplementary constraints alongside conven-
tional BMS methods. This approach specifically examines
uniaxial mechanical stress resulting from electrode expan-
sion during charge and discharge cycles.

Cannarella et al. [148] demonstrated that stack stress is
a dynamic parameter that fluctuates with SoC, driven by
electrode deformation, and accumulates over the battery’s
lifespan. These fluctuations offer valuable insights into bat-
tery performance and degradation mechanisms.

Experimental Protocol

The materials required for mechanical stress analysis in
batteries include electrodes, separators, and structural com-
ponents, which can be tested individually or as part of an
assembled cell. Samples must be carefully mounted to sim-
ulate real-world conditions or specific stress scenarios.

The experiment begins by applying mechanical stress
to the battery through methods such as mechanical testing
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equipment, pressure cells, or controlled external forces. The
material’s response to stress ismonitored using strain gauges,
accelerometers, or other mechanical sensors.

Mechanical stress analysis helps:

• Assess the mechanical integrity of electrode materials
and current collectors.

• Evaluate the impact of mechanical forces on battery
safety and performance.

• Identify structural failures that could lead to battery
degradation or failure.

This type of testing is particularly relevant for electric
vehicles and portable electronics, where batteries are subject
to frequent mechanical loading during operation and trans-
port.

The collected data provides insights into mechanical
behavior, including elasticity, stiffness, and failure points.
These findings are crucial for optimizing battery designs and
ensuring their long-term structural stability.

SoC Estimation

By measuring stack stress changes [149], which correspond
to changes in electrode thickness, it is possible to deter-
mine the Capacity/Charge over stress (COS) if a stress-COS
relationship for a given cell is known. The use of stack
stress measurements to determine the SoC is advantageous
because in many systems the stress is more sensitive to SoC
than conventional parameters such as voltage. The use of
a mechanical constraint to determine the SoC also has the
advantage of being able to measure the self-load, as the
stress/expansion is directly related to the lithium content of
the electrodes. Conventional coulomb counting methods that
measure the load passed through an external circuit cannot
resolve the internal discharge.

The authors find a stress-SoC relationship dependent on
the cell’s SoH. This dependence on SoH is the result of the
irreversible increase in thickness that occurs during cellu-
lar aging, This causes all stress measurements to shift to
higher stresses when the electrodes expand irreversibly with
the decrease in SoH.

SoH Estimation

Mechanical stress can serve as an effective metric for esti-
mating SoC. By measuring stack stress changes, which
correspond to electrode thickness variations, it is possible to
establish a Capacity Over Stress (COS) correlation-provided

that a stress-COS relationship is defined for a given cell
type [149].

This method offers several advantages over conventional
voltage-based or Coulomb counting techniques: Stack stress
is more sensitive to SoC fluctuations than voltage in many
systems; Unlike external Coulomb counting methods, stack
stress measurements can detect internal discharge, providing
a more comprehensive assessment of the battery’s charge
state.

Moreover, Cannarella et al. [149] found that the stress-
SoC relationship is dependent on the cell’s SoH. As the
battery ages and electrodes irreversibly expand, stress mea-
surements shift to higher values, reflecting capacity degra-
dation over time.

Results and Deepening

Grazioli et al. [150] describe a modeling of electrolytes to
test mechanical stresses impact on LIBs performance.

Ultrasonic Testing

Method

Ultrasonic testing is a non-destructive evaluation technique
that employs high-frequency sound waves to inspect mate-
rials, measure thickness, and characterize internal struc-
tures [99]. In battery research, it is used to assess internal
integrity, detect defects, and monitor battery performance.

This technique relies on ultrasonic transducers that emit
and detect sound waves as they travel through battery com-
ponents such as electrodes, separators, and electrolytes. The
interaction of these waves with internal structures produces
echoes, which are analyzed to extract valuable information
about the SoC and SoH of the battery.

For optimal performance, transducer selection (in terms of
frequency and size) should be tailored to the specific battery
components under inspection. Advanced signal processing
techniques, such as TOF analysis, waveform processing, and
imaging algorithms, enhance data interpretation. Addition-
ally, combining ultrasound with complementary methods
likeX-ray imaging, electrochemical testing, or visual inspec-
tion provides a more comprehensive assessment of battery
health.

Experimental Protocol

The materials required for ultrasonic testing in battery anal-
ysis include electrodes, separators, electrolytes, and assem-
bledbattery cells. The samples canbe tested individually or as
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part of a complete battery system. Proper sample preparation
ensures optimal ultrasonic wave transmission and reception.

The experiment begins with ultrasonic wave generation
using a transducer. The transducer applies high-frequency
sound waves to the sample surface, which propagate through
the material. These waves interact with interfaces, bound-
aries, and defects, causing reflections and scattering. The
transducer detects these reflected waves, and the data is ana-
lyzed to visualize the battery’s internal structure.

Ultrasonic testing can help:

• Detect defects such as delamination, cracks, voids, and
electrode degradation.

• Assess electrolyte distribution by monitoring wetting
processes.

• Identify gas accumulation resulting fromunwanted chem-
ical reactions.

• Measure acoustic impedance to track material degrada-
tion over time.

The collected ultrasonic signals are processed to generate
images and plots representing the battery’s internal compo-
sition. Variations in amplitude and TOF indicate structural
defects or material property changes.

SoC Estimation

Research has demonstrated a linear relationship between
ultrasonic wave transmission and SoC. Specifically, two key
parameters-wave amplitude and TOF-have been shown to
correlate with battery charge state [151].

Further studies [152–154] confirm these relationships
using similar ultrasonic scanning devices. Deng et al. [99]
conclude that SoC significantly influences ultrasonic proper-
ties, though the exact underlying mechanisms remain an area
of ongoing research.

SoH Estimation

Ultrasonic testing provides insights into two critical aspects
of battery SoH: the electrolyte wetting process and gas for-
mation.

In Electrolyte Wetting Process, the ultrasound signal is
highly sensitive to the electrolyte’s interaction with electrode
materials [155]. By monitoring this process, researchers can
optimize electrolyte selection, improve battery design, and
assess long-term material stability.

In Gas Generation Detection, gas evolution inside the
battery is a key indicator of degradation, often linked to
lithium deposition and side reactions. Ultrasound imaging
enables real-time gas detection, allowing researchers to pin-

point degradation sources and assess their impact on battery
longevity.

Results and Deepening

Wu et al. [156] provide the protocol for health monitor-
ing, Robinson et al. [157] for cycling behavior, and Shen
et al. [158] for in situ errors detection.

Conclusion

This paper has explored the critical role of SoC and SoH
estimation in BMSs through the lens of white-box modeling.
Grounded in fundamental physics and chemistry principles,
white-box models provide a rigorous framework for predict-
ing battery behavior and assessing its long-termhealth. These
models bridge the gap between theoretical understanding and
practical applications, enabling real-timemonitoring, perfor-
mance optimization, and extended battery lifespan.

With the increasing demand for electrification, renew-
able energy storage, and electric vehicles, the accurate
estimation of SoC and SoH has become more important
than ever. White-box models serve as a cornerstone in this
endeavor, offering deeper insights into battery processes and
enabling more efficient and reliable energy storage solu-
tions. However, their deployment is not without challenges.
The complexity of battery systems, the need for precise
parameterization, and real-world uncertainties require ongo-
ing research and refinement to improve the accuracy and
adaptability of these models.

While white-box models offer high interpretability and
accuracy, they often struggle with real-world uncertainties
such as manufacturing variations and environmental influ-
ences. To address these challenges, grey-box models have
emerged as a hybrid approach, integrating physics-based
modeling with empirical data.

Grey-boxmodels balance accuracy and flexibility,making
themwell-suited for real-world battery applications. By com-
bining the physical understanding of white-box models with
the adaptability of data-driven black-box models, grey-box
approaches capture the dynamic and nonlinear behavior of
batteries under diverse operating conditions. However, their
effectiveness relies on access to high-quality experimental
data for calibration and validation.

The development of more intelligent and adaptive bat-
tery management systems will likely involve a combination
of white-box, grey-box, and black-box models. Advance-
ments in machine learning, sensor technology, and elec-
trochemical modeling will further enhance our ability to
predict battery degradation, optimize charging strategies, and
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improve energy efficiency. Continued research into hybrid
modeling approaches will be essential to overcoming the
limitations of individual models and ensuring sustainable,
high-performance energy storage solutions for the future.
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