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Abstract

Digital twins are a promising technology for simulating complex systems,
especially in the smart grid domain. This paper offers a comprehensive liter-
ature review on digital twins, focusing on data gathering, data management,
and human-in-the-loop control design aspects. Emphasizing the integration
of AI and machine learning in big data, it enhances analytics and decision-
making capabilities. We introduce a collaborative framework involving mul-
tiple stakeholders to maximize the potential of digital twins. The paper
examines digital twin applications in smart grids, covering areas like asset
management, predictive maintenance, energy optimization, and demand re-
sponse. By synthesizing research and implementation findings, we identify
trends, challenges, and opportunities in the field.
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1. Introduction

Digital Twin (DT) technologies have emerged as a transformative concept
in the context of Smart Grid (SG) applications, revolutionizing the way we
monitor, model, and control power systems. The definition of DT, as summa-
rized by Fuller et al. (2020), entails a virtual replica of a physical system or
process that mimics its behavior in real-time, providing valuable insights and
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facilitating decision-making processes. In line with the SG’s challenges iden-
tified by Amin and Wollenberg (2005); Amin (2011), DT technologies offer
immense potential for optimizing energy efficiency, improving grid reliability,
and fostering sustainability in SGs.

DT is not limited to SG applications. For example, DTs are used in pro-
duction lines to optimize processes and manage energy, heat, time lag, and
overall architecture, as demonstrated by Min et al. (2019) in the petrochemi-
cal industry and by Mendi (2022) in the automobile industry. As presented by
Tao et al. (2019), DTs are closely linked to Industry 4.0. In this paradigm,
cyber-physical systems (CPS) and DTs have garnered extensive attention
from researchers and industry practitioners. The boundary between CPSs
and DTs is subtle, and discussions to define each are actively ongoing. In
this article, we consider DTs as digital representations of physical systems
that may not yet be efficient, with the aim of improving their effectiveness.

The effective design of DT systems is crucial for their development and
implementation in SGs. It involves considerations such as system architec-
ture, data acquisition from heterogeneous sources, scalability, and replica-
bility. Given the complexity of SG systems, as evidenced by Guérard et al.
(2012); Ahat et al. (2013), the design process ensures an accurate represen-
tation of all system components and allows for the seamless integration of
various SG technologies and components (which potentially don’t yet exist).

By representing and organizing knowledge in a structured manner, on-
tologies enable semantic interoperability, data integration, and meaningful
contextual understanding. De Nicola and Villani (2021) declare ontologies
capture the complex relationships and dependencies among elements to pro-
vide decision-making processes accurately.

Data management is another critical aspect of DT systems as highlighted
by Daki et al. (2017). SGs generate vast amounts of data and its impact
mustn’t be neglected (Allam and Dhunny (2019)). Data come from diverse
sources, including sensors, SCADA systems, and IoT devices. Effective data
management techniques, such as data acquisition, preprocessing, fusion, and
quality assurance, ensure the reliability and integrity of the DT. Additionally,
data storage, analytics, and visualization, as part of the overall design, enable
valuable insights and support data-driven decision-making processes.

From ontologies and data management, one can model and simulate SGs.
Accurate system modeling allows the DT to mirror the behavior of the phys-
ical grid, enabling real-time monitoring, analysis, and prediction of grid dy-
namics. Different modeling approaches, such as physics-based models, data-
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driven models, and hybrid models, capture the intricacies of the SG’s oper-
ation. Simulation and validation techniques further enhance the reliability
and accuracy of DT systems, allowing for virtual testing, scenario analysis,
and performance evaluation.

While DT technologies offer significant opportunities for SG applications,
they also come with challenges. Data quality, integration, and interoperabil-
ity pose obstacles to harnessing the full potential of DT systems (Jafari et al.
(2023)). Ensuring privacy and security of grid data in a DT environment is
also a critical concern (Sakhnini et al. (2021)). Additionally, the computa-
tional requirements for large-scale DT systems and the need for standardiza-
tion present challenges that need to be addressed.

Many studies propose a design methodology for handling DTs. Psarom-
matis and May (2023) provided a design after analyzing 760 papers; however,
their method is generic and lacks details about the systemic approach, de-
velopment, and operations. On the other hand, Tao et al. (2019) introduced
a V-method with plenty of local feedback but lacks an internal loop if a
previous step doesn’t correspond to the needs. Schroeder et al. (2020) en-
compassed human-machine interaction and learning processes but failed to
provide a complete design. In this context, our paper fills the gap concern-
ing a methodology design for DTs. Moreover, we discuss the role of data
management and technology to maintain a dynamic workflow and ensure a
relevant design for complex system modeling.

To summarize, we have identified the following gaps in DT methodology
design:

• The lack of commonly used standardized frameworks and protocols
as exposed by Jacoby and Usländer (2020). Ensuring that DTs from
different domains, industries, and software platforms can seamlessly
interact remains a significant challenge.

• DTs rely heavily on data as highlighted by Singh et al. (2021b). Data
flow management must be a part of the DT design.

• DTs are mostly done for specific use-cases (Attaran and Celik (2023)).
DTs are being applied across various domains, from manufacturing to
healthcare to urban planning. Data management, software and design
are differents with little overlap between studies.
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• Security, ethic and privacy are often neglected (Farsi et al. (2020)). As
DTs collect and process sensitive data, security must be a part of the
DT design.

• Human-Machine interaction due to the use of machine learning, AI
integration, robot and cobotic is an issue to how to manage a DT as
exposed by Wang et al. (2022). The interaction must be an important
part of such design.

The article contributions are as follows:

• A literature review on SGs’ DT applications with up-to-date references

• An updated DT definition taking account of recent works and tech-
nologies

• A methodology to design DT, called DTOps with 4 knots, adapted to
recent works in large-scale software development methodologies

• The knot about Data is discussed, especially how to manage ontologies
and data management in such methodology.

• A discussion about main challenges on various use cases and how the
presented methodology can solve those.

The objective of this article is to delve into the various components for de-
veloping efficient and effective DT systems in the context of SG applications.
By exploring and analyzing the design considerations (Section 3), ontolo-
gies (Section 4), data management (Section 4), and modeling and simulation
approaches (Section 5), we aim to provide valuable insights into the integra-
tion of these components to enable the realization of advanced DT systems
for SGs. Then, some applications (Section 5) are analyzed. Challenges and
future directions are discussed in Section 6. The section 7 concludes the
paper.

2. Definition of Digital Twin

A DT can be defined as a virtual replica or digital representation of a
physical asset, process, or system. It can be defined as follows:
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A DT refers to a virtual representation or digital replica of a
physical object, system, or process. It encompasses both the
physical and digital realms, allowing real-time synchronization,
interaction, and feedback between the physical entity and its dig-
ital counterpart. DTs enable monitoring, analysis, simulation,
and optimization, facilitating enhanced understanding, decision-
making, and performance improvements in various domains, in-
cluding manufacturing, infrastructure, and the Internet of Things
(IoT).

2.1. Key Components

The key components of a DT system encompass various aspects, each
playing a vital role in capturing and replicating reality in the virtual space.
The works of Jones et al. (2020); Singh et al. (2021a); Tao et al. (2022) define
the following key components to build a DT:

Physical Object/System. The physical object or system is the real-world en-
tity that the DT represents. It can be a physical asset, such as a machine,
building, or infrastructure system, or it can represent a larger system, such
as a smart city or a manufacturing plant.

Virtual Representation. The virtual representation is the digital counterpart
of the physical object or system. It is created using various technologies,
such as computer-aided design, 3D modeling, or point cloud data. The virtual
representation mirrors the geometry, structure, and attributes of the physical
entity.

Data Acquisition. It rely on the collection of vast amounts of data from di-
verse sources such as sensors, meters, SCADA systems, and IoT devices.
These data streams provide real-time and historical information about oper-
ating conditions and performance.

Data Integration and Fusion. A DT must incorporate methods to integrate
and fuse complex data (numeric, qualitative, text, time series) from het-
erogeneous sources and/or providers. This process involves harmonizing and
aggregating data to create a unified view of the SG, enabling a comprehensive
understanding of its behavior.
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Modeling and Simulation. DT systems utilize advanced modeling techniques
to replicate the physical behavior of the SG. These models can encompass
various levels of complexity, ranging from physics-based models that cap-
ture the fundamental principles governing the grid’s operation to data-driven
models that leverage historical data to make predictions and optimize energy
management.

Visualization and User Interface. It is a crucial component of DT systems
as it allows operators and stakeholders to gain insights and make informed
decisions. Intuitive user interfaces and visual representations enable stake-
holders to monitor the grid’s status, identify anomalies, and assess the impact
of different operational scenarios.

2.2. Digital Twin Levels

The role of DT systems in SGs is multifaceted. They provide a compre-
hensive and dynamic representation of the physical grid, allowing operators
and stakeholders to gain a deeper understanding of the system’s behavior, di-
agnose problems, and optimize operations. As defined by Amor et al. (2019),
SG’s modeling and simulation enable real-time monitoring, providing users
with a holistic view of the grid’s status, helping them identify anomalies or
potential risks promptly. Moreover, by simulating various operational scenar-
ios and performing predictive analytics, a model supports decision-making
processes, enabling proactive interventions to improve energy efficiency, reli-
ability, and grid stability. We can summarize the degree of maturity of DTs
into 6 additive levels :

1. Foundation Model: Virtual model of a physical object for asset infor-
mation management, real-time data collection on a cloud/on-premise
platform.

2. Predictive DT: This model adds real-time analytics for predictive main-
tenance and performance management.

3. Prescriptive DT: This model enhances the previous ones with real-time
optimization and what-if simulation.

4. Transformative DT: Remote Collaboration and immersive training are
the key points of this level;

5. Cognitive DT: This level adds machine-human interactions as active
learning to let more place to artificial-based decision-making, auto-
matic maintenance, and autonomous operations (through drones for
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example). See the surveys of Ramu et al. (2022); Zheng et al. (2022)
for more details on this level.

6. Adaptive Autonomous Twin: It can also change their learning strategy
to adapt to new environmental uncertainties. Hribernik et al. (2021)
provide more explanation of this concept.

DTs in industry predominantly fall within the range of levels 2 or 3, with a
few large-scale DTs reaching level 4. Now, let’s delve into some important
use cases to illustrate this.

2.3. Digital Twin Applications

A DT can be applied to various use cases, which we can categorize into
four main concepts: Monitoring and Control, Maintenance, Decision Sup-
port, and Training. Let’s explore each of these concepts individually. It’s
important to note that a DT can encompass one or multiple of these use
cases.

Monitoring and Control. DTs facilitate remote monitoring and control of
the physical system. They allow access and control of the virtual represen-
tation of the system from anywhere, providing remote visibility, diagnostics,
and control capabilities. The use of dashboards or online boards about our
consumption become common nowadays.

Real-time monitoring and control of the SG is a key point of a DT. By
continuously updating the virtual representation based on real-time data,
operators can closely observe a system’s performance, identify potential is-
sues, and take proactive measures with, for example, Energy Management
Systems. For example, Francisco et al. (2020) propose a DT to efficiently
manage the building’s energy in real-time. DTs-based remote semi-physical
commissioning of flow-type smart manufacturing systems is also an example
of how this technology can be applied. By creating digital replicas of manu-
facturing systems, it becomes possible to commission and fine-tune systems
remotely, saving both time and resources.

DTs support the optimization and control of the physical system by ap-
plying algorithms and models to identify optimal operating parameters, con-
figuration settings, or resource allocation. This functionality enables optimiz-
ing energy consumption, improving efficiency, and maximizing performance.
For example, Bhatti et al. (2021) did a survey about the use of DTs for
electric vehicles and how they can be integrated into the grid for better op-
timization and control of energy flows.
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Maintenance. By analyzing real-time and historical data, DTs predict poten-
tial failures or performance degradation in the physical system. This enables
proactive maintenance, helping to prevent downtime, reduce costs, and ex-
tend the lifespan of the assets. Building Information models (BIM)s are
recent examples of this goal. For example, Khajavi et al. (2019) provides a
review of DT benefits for building, thanks to building information modeling,
and how predictive maintenance is essential in those models.

DTs cover the entire lifecycle of the physical system, from design and
construction to operation and maintenance. They enable the capture and
integration of data at each stage, supporting informed decision-making, per-
formance evaluation, and optimization throughout the lifecycle. As an exam-
ple, Yitmen et al. (2021) present a Cognitive DT model for building lifecycle
management.

Decision Support. DTs provide decision-makers with a virtual platform to
test different scenarios, evaluate the impact of their decisions, and identify
optimal strategies. By incorporating human expertise and judgment, the
simulation outcomes can be refined, leading to better-informed decisions. In
dynamic environments where changes are frequent, DTs can facilitate quick
adjustments and optimizations, ensuring that systems remain aligned with
changing needs and outcomes.

DTs enable simulation and what-if analysis, allowing stakeholders to sim-
ulate different scenarios and assess their potential impact on the physical sys-
tem. This functionality helps in testing hypotheses, evaluating alternative
strategies, and optimizing decision-making. By capturing data and insights
from the physical system, one can identify areas for improvement, test new
technologies or processes, and drive innovation in the design, operation, and
management of the system. For example, Taleb. et al. (2023) propose a
multi-agent model to simulate various scenarios of grid failures or enhance-
ment in the context of an island.

By analyzing the simulation outcomes, operators can identify patterns,
trends, and opportunities for optimizing system performance, leading to on-
going refinement of operational strategies. In emergency situations, such as
blackouts, equipment failures, or natural disasters, the result of such simu-
lation helps operators to develop and refine emergency response plans. It
enables them to understand the potential consequences of their decisions,
assess the effectiveness of different response strategies, and identify areas
for improvement. DTs allow for the validation of system performance in
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a semi-physical simulation manner. Stakeholders can thoroughly test sys-
tem configurations and changes before implementing them in the physical
environment. This reduces the likelihood of costly errors and downtime.

A DT has the potential to facilitate efficient configuration/reconfiguration,
validation, and testing processes in various systems. It enables the swift
identification of inefficiencies and allows for the assessment of the viability
of physical solutions during implementation. For instance, DTs play a piv-
otal role in Industry 4.0 by supporting the design of smart manufacturing
systems, aiding in the rapid customization of automated flow-shop manu-
facturing systems, and assisting in the creation of comprehensive models for
configuring, controlling, optimizing, and managing flow-type smart manufac-
turing systems (Tao et al. (2022)).

Training. DT provides a platform for collaborative decision-making, allowing
stakeholders to actively participate, contribute their insights, and understand
the implications of different grid management strategies.

DT allows them to gain experience and improve their skills in managing
complex grid operations. They can practice responding to different scenarios,
learn from their mistakes, and develop strategies for efficient and effective
grid management. This functionality helps in enhancing skills, evaluating
strategies, and improving safety without impacting the physical system. For
example, Olszewski et al. (2019) propose a serious game for the ecological
impact of people in a smart city.

3. DTOps Methodology for DT

3.1. Needs for an Efficient DT

Designing DTs for complex adaptive systems, such as SGs, smart cities, or
smart buildings, requires a thoughtful and systematic approach. These sys-
tems exhibit dynamic and interconnected behaviors, where numerous com-
ponents interact and adapt in response to changing conditions. To effectively
design DTs, specific methods and considerations are needed:

• System Understanding and Mapping

• Modularity and Scalability

• Data Acquisition and Integration
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• Dynamic Modeling and Simulation

• Feedback Loops and Control Mechanisms

• Resilience and Adaptability

• Visualization and User Interface

System Understanding and Mapping. Any design begins with a deep un-
derstanding of the system’s structure, components, and interactions. This
involves mapping out the various elements, subsystems, and their interdepen-
dencies. For SGs, this may include power generation, distribution networks,
energy storage, demand response systems, and renewable energy integration.
As an example, Amor et al. (2014) propose a multi-level model of a SG by
analyzing each component of the grid.

Modularity and Scalability. One should consider a modular approach, where
components can be added, removed, or updated without disrupting the entire
system. This allows for flexibility and adaptability as the system evolves or
expands. For example, Egert et al. (2021) propose an holonic multi-agent
model for SG where each component adapts to new conditions and what-if
scenarios.

Data Acquisition and Integration. Design methods should address data ac-
quisition, considering the integration of heterogeneous data sources, such as
sensors, IoT devices, utility networks, and external data feeds. Ensuring
data compatibility, reliability, and real-time accessibility is crucial. Zagan
and Danubianu (2020) present the data lake approach and how it can be
used efficiently in the context of SGs.

Dynamic Modeling and Simulation. Any design should incorporate dynamic
modeling techniques, including agent-based modeling, system dynamics, or
other simulation approaches. These models capture the system’s adaptive
behavior, allowing for scenario testing and prediction of system dynamics.
For example, Guerard and Pousseur (2020) present a JADE model for smart
cities to simulate how consumers in a microgrid must adapt to grid defects.
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Feedback Loops and Control Mechanisms. A model has to incorporate feed-
back mechanisms to update the virtual representation based on real-time
data from the physical system. This enables closed-loop control, adap-
tive decision-making, and system optimization. Since SG integrates socio-
economic-technical elements, feedback helps the process to adapt to condi-
tions and constraints as shown by the increasing amount of dynamic methods
for SGs like the works of Mbungu et al. (2020).

Resilience and Adaptability. Resilience features, such as fault tolerance, re-
dundancy, and adaptive control strategies are part of a complex system. This
allows the DT to mirror the system’s ability to adapt and recover from distur-
bances. Resilience occurs at multiple levels of scale and time and on different
actors of the system as presented by Kandaperumal and Srivastava (2020).

Visualization and User Interface. Design methods should include visualiza-
tion techniques and user-friendly interfaces to facilitate interaction with the
DT. This enables monitoring system behavior, access to relevant informa-
tion, and make informed decisions. Visualization tools can include 3D mod-
els (like the Smart City construction and management by Lv et al. (2022)),
dashboards (like Helibot by Nguyen et al. (2020) to manage peer-to-peer
energy’s exchange), and augmented reality interfaces (Lodetti et al. (2021)
propose to help electricians thanks to VR).

3.2. DevOps Methodology

Figure 1: Waterfall modeling methodology.
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Figure 2: DevOps methodology. Source Wikimedia Commons.

A classic Waterfall methodology as explained in Figure 1 can not handle
the complexity of such design. However, the DevOps methodology (shown
in Figure 2) shares some similarities with the design of DTs for complex
systems (see the works of Leite et al. (2019)). DevOps is an iterative and
collaborative approach that focuses on continuous improvement, adaptabil-
ity, and scalability in software development and operations. The DevOps
methodology introduces several new paradigms, including:

• Continuous Integration and Deployment CI/CD

• Colloboration and Communication

• Continuous Improvement

• Human-in-the-loop system

Continuous Integration and Deployment. Regular data integration and real-
time updates from the physical system are essential for maintaining an ac-
curate representation of the system’s behavior. Since the DT can handle
What-If scenarios, the model must also include the possibility to add, re-
move, and alter existing sub-system.

Collaboration and Communication. DT design involves multiple stakehold-
ers, and effective collaboration among domain experts is essential. Designing
a DT requires knowledge of many fields and the full cooperation of experts
to handle the complexity of the physical system.

12



Continuous Improvement. Like any process of complex adaptive system mod-
eling, it needs to identify areas for enhancement, address system inefficien-
cies, and introduce iterative improvements to enhance performance and value
delivery.

Human-in-the-loop system. It refers to the integration of human decision-
makers, operators, or stakeholders into the modeling and simulation pro-
cesses, enabling their active participation and influence on system behavior
and outcomes. Human-in-the-loop has been integrated into active learning
and now impacts several other fields, see Rothrock and Narayanan (2011)
for more details. The Figure 3 show the difference between a human at end-
points (on top) and human-in-the-loop human-machine interactions.

Figure 3: Difference between human-out (top)/human-in (bottom) -the-loop.

A parallel between needs and DevOps methodology provides a better
understanding of the necessity to adapt DevOps to DT design.

• System Understanding and Mapping: DevOps enhances system under-
standing by promoting communication and collaboration among stake-
holders at each iteration. This improved knowledge enables better
project mapping, accounting for new challenges, gaps, and evolving
needs identified throughout the methodology.
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• Modularity and Scalability: They are key principles in DevOps, partic-
ularly in the context of the DevOps loop and CI/CD. These concepts
emphasize the importance of designing systems that can be easily bro-
ken down into modular components and scaled horizontally to accom-
modate changing requirements and workloads.

• Data Acquisition and Integration: It is not typically managed within
the DevOps methodology. However, before modeling a physical object,
it is crucial to gather relevant data about it. In essence, a separate loop
dedicated to Data Acquisition and Integration should be integrated into
the methodology’s design.

• Dynamic Modeling and Simulation: It requires adaptations when ap-
plying the DevOps methodology. To address this, we adapt CI/CD
and Continuous Improvement principles to suit our specific case study.

• Feedback Loops and Control Mechanisms: It involves the ’human-in-
the-loop’ paradigm, where humans provide valuable feedback in addi-
tion to machine-generated feedback through control mechanisms. This
iterative process aims to continuously improve the model with each
iteration..

• Resilience and Adaptability: The modeling process involves the contin-
uous evolution of the complex system at each loop. Some functions may
become obsolete, while others require updates. Achieving resilience and
adaptability relies on CI/CD and Continuous Improvement principles.

• Visualization and User Interface: They are not inherent parts of the
DevOps methodology but typically fall within the operations phase of
the design methodology.

By adopting the DevOps methodology, we can sketch a first DT design:

• Real Product:

1. Gather data;

2. Integrate data;

3. Choose Design.

• Digital Twin:
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1. Evaluate and analyze data;
2. Model characteristics;
3. Evaluate thanks to simulations behaviors to stimuli change;
4. Transform to feedback.

• Make adjustments, return to first point.

Now that we’ve introduced the core concepts of the DevOps methodology
and their application to the requirements of an efficient DT, we will proceed
to describe the main concepts of our methods and the key components in the
next subsection.

3.3. DTOps Methodology

To summarize the methodology presented in this paper, DT design should
include the following processes and paradigms adapted mainly from DevOps,
but also from CRISP-ML(Q) (Studer et al. (2021)), DevSecOps (Akbar et al.
(2022)), ML-factory (Lévy et al. (2022)), and MLOps (Kreuzberger et al.
(2023)):

1. Define and Design
2. Data Acquisition and Integration
3. Model Development and Training
4. Deployment and Operations

Define and Design. In the initial phase, the DT is defined, and the design
considerations are established. This involves identifying the scope, objec-
tives, and desired outcomes of the DT. The domain knowledge and require-
ments are analyzed, and the DT architecture, data models, and interfaces
are designed.

Data Acquisition and Integration. The DT relies on data from various sources.
In this phase, data acquisition mechanisms are established to collect data
from sensors, devices, and external systems. Data integration techniques are
applied to aggregate, preprocess, and cleanse the data, ensuring its quality
and consistency.

Model Development and Training. DTs leverage models to simulate and pre-
dict system behavior. In this phase, models are developed, ranging from
physics-based models to machine learning algorithms. The models are trained
using historical data, and techniques such as MLOps are employed for model
development, versioning, and deployment.
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Deployment and Operations. Once the DT is developed and trained, it is
deployed in the operational environment. Real-time data from the physical
system is continuously fed into the DT, allowing it to monitor and analyze
the system’s behavior. DevSecOps principles are applied to ensure secure and
reliable deployment, with continuous monitoring, updates, and bug fixes.

The whole methodology can be summarized into a knot lifecycle (Figure
4) where each part forms a loop to itself and can provide feedback (i.e. get
back to) any previous part:

1. Design: Define the physical model and apply a systemic approach to
decompose it.

(a) Physical Model: the stakeholders have to define the scope of what
they needs to know (as data) from the physical model.

(b) Systemic Analysis: the stakeholders have to study the physical
model thanks to a systemic analysis, see Lévy et al. (2022) for
more details about this method.

(c) Define: since the systemic analysis is done, one has to use a mod-
eling language to formalize the model as shown by Ahat et al.
(2013). We recommend using a language adapted to complex sys-
tems such as AUML, SysML with KQML or ACL following the
FIPA or OMG frameworks (as exposed by Guerard and Pousseur
(2020)). Ontologies are created at this step.

(d) Refine: The Define step is compared to the scope of the Physical
Model. If necessary, one can return to (1.a) to modify the scope.

2. Data: From the design, work on the data to fulfill requirements. This
knot is discussed in the following section.

(a) Collect: At this step, the data is gathered into Datamesh or Lake-
house. We recommend reading Lyko et al. (2016) for a better
understanding of the lifecycle of data from the sensors to the stor-
age.

(b) Curate: The organization and integration of data collected from
various sources follow annotation, publication, presentation, and
add values are created from the data. We recommend reading
Freitas and Curry (2016) for a better understanding of the goals
and processes of Data curation.

(c) Transform: Governance, orchestration, and lineage of the data
mustn’t be neglected. We recommend reading the books of Reis
and Housley (2022) about those steps.
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(d) Validate: Data quality, versioning, and features validate or not
this knot. If necessary, one can return to (2.a) or to (1.a) if the
data processing doesn’t satisfy the proposed design.

3. Model: Integrate the data into the design, define the scenarios and the
wanted behaviors.

(a) Build: Since the model and the data are ready. Programmers have
to build the model thanks to an adapted language. We recommend
using multi-agent languages such as GAMA, JADE, NetLogo or
AnyLogic. Agent-based modeling follows its own frameworks (see
Niazi and Hussain (2012))

(b) Train: Since complex systems are sensible to internal and external
factors, monitors, operators and supervisors (respectively machine
operations, human operations, and human supervision of the ma-
chine operations) have to be set. The sensibility of the model is
tested. We recommend seeing Dooley (1997) for the chaos theory
and attractors to understand this step.

(c) Evaluate: Various variables of the model are tracked during the
first simulations to evaluate if the program corresponds to the
model (entities, behaviors).

(d) Test: Feedback about the training and evaluation can validate
this knot (continue to Operations first step) or jump to (4.d) to
provide whole feedback to Design and Data knots.

4. Operations: Test the model, and provide feedback from humans and
machines.

(a) Deploy: The model is tested in real conditions.
(b) Operate: The Train and Evaluate steps are done with real data

and in real conditions.
(c) Monitor: Supervisors provide feedback about how the model per-

forms in real conditions.
(d) Plan: Depending on the feedback, stakeholders of each step have

to plan how they need to change or update their work.
(e) Formulate: The plan of change follows its own framework to be

relevant and understandable for all stakeholders. Return to each
step (a) for each knot.

Similar to the iterative nature of DT design, DTOps emphasizes iterative
development and improvement cycles. It promotes a feedback-driven process
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Figure 4: DTOps: Digital Twin Operations Methodology.

(machine monitors, human operators and human supervisors) where each it-
eration builds upon the previous one, incorporating stakeholders feedback,
lessons learned, and evolving requirements. Human-in-the-loop simulation
enhances the capabilities of DTs by incorporating human expertise, judg-
ment, and decision-making into the simulation process. It allows decision-
makers and operators to interact actively with the DT, observe its behavior,
and make informed decisions based on the simulation outcomes.

This interactive loop between the human operator and the DT creates
a feedback mechanism that can lead to improved system performance, in-
creased situational awareness, and enhanced decision-making. Human-in-
the-loop simulation offers use cases for the DT: decision support, skill devel-
opment, risk mitigation, stakeholder engagement, and continuous improve-
ment as described in the previous section. However, integrating humans into
the simulation process also poses challenges. It requires an accurate repre-
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sentation of human decision-making processes, considering cognitive abilities,
biases, and subjective factors.

Another essential point of the DTOps is security. Since this paper focuses
on the DTOps methodology and the Data knot, we won’t provide an exten-
sive explanation of security measures. For an overview of security threats in
DT, please refer to Alcaraz and Lopez (2022), and for open challenges related
to security in DT, consult Holmes et al. (2021). The lifecycle must integrate
the following points at each step and feedback. Security by Design promotes
incorporating security controls and best practices into the design and archi-
tecture. This ensures that security measures are inherently built into the
twin’s structure rather than added as an afterthought. It emphasizes the
use of automated security testing tools and techniques to continuously scan
and analyze the DT’s components, identifying potential security weaknesses
or issues. DTs often consist of various interconnected components, such as
sensors, data sources, analytics engines, and visualization tools. Security
must help to maintain a consistent and secure state of these components,
enabling effective management of their configurations, updates, and secu-
rity profiles. Security managers implement strong access control mechanisms
and privilege management strategies, ensuring that only authorized individ-
uals or systems can access and modify the DT’s design, data, and related
resources (dockers/kubernetes, microservices, etc.). It encourages the use
of centralized logging and real-time monitoring to enable proactive security
management.

The remainder of the paper will focus on the Data knot, specifically ad-
dressing ontology and data management challenges. The discussion of the
other knot will be reserved for future papers.

4. Ontology and Data Management in DTOps

As declared by Lenzerini (2011), ontologies and data management are in-
terconnected and play complementary roles in managing and organizing data
within domains like SGs, smart cities, or smart buildings. The most known
SG Architecture Model is made by CEN-CENELEC-ETSI et al. (2012); see
Prieto González et al. (2021) for a recent literature review about ontologies
in SGs.

Ontologies provide a standardized representation of concepts, relation-
ships, and properties, facilitating semantic interoperability and serving as a
foundation for data modeling and representation. They ensure consistency
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and compatibility when integrating and exchanging data between hetero-
geneous systems, enabling data integration and interoperability. Ontologies
also help ensure data quality and consistency by defining allowed values, data
types, and constraints, and they enhance querying and retrieval capabilities
by providing a structured and semantically rich representation of the domain.

In other words, ontologies provide a structured framework for capturing
domain-specific information and facilitating semantic interoperability. One of
the primary benefits of utilizing ontologies in SG applications is their ability
to enhance the capabilities and interoperability of DT systems. Ulivi (2019)
proposes a systemic view of ontology, which adopt different levels of obser-
vation to describe different systemic levels, especially efficient in complex
systems like the SG. The intertwine ontologies facilitate semantic interoper-
ability, enabling data from different sources to be integrated and interpreted
coherently on each level of operability. Thus, the main challenge of ontologies
is its level of complexity.

Concerning the grid, ontologies capture the hierarchical structure and
relationships between various components, such as generators, transmission
lines, and substations. Ontologies capture information about different types
of renewable energy sources, their geographical locations, and their genera-
tion capacities. By integrating this knowledge into DT systems, ontologies
enable accurate modeling and simulation of renewable energy generation and
its integration into the grid like virtual power plants as proposed by Kott
and Kott (2019). The most used ontology’s technologies are RDF, OWL,
and OWL2.

Since the ontologies are part of the DTOps, they must adopt a feedback
process. From the works of Gracia et al. (2010), three kinds of feedback
occur. Ontology matching use tools to define shared groundings between the
two models; those tools determine the good terminology for the stakeholders
and the needs, and a good mapping is useful to find missing or superfluous
ontological elements. Semantic reasoning detects inconsistencies between hi-
erarchies (same ontology or between ontologies of different systems). Struc-
ture comparison analyzes both models to estimate if they can modify the
behaviors of the systemic model. The feedback process is summarized in
Figure 5.

On the other hand, data management techniques address various chal-
lenges related to data acquisition, integration, preprocessing, storage, analyt-
ics, fusion, scalability, and real-time capabilities. These techniques leverage
ontologies to ensure data quality, enforce validation rules, perform cleans-
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Figure 5: Feedback process for ontologies.

ing and transformation operations, and maintain data integrity and consis-
tency. Data management techniques also utilize ontologies to define query
languages, retrieval mechanisms, and analytics algorithms that exploit the
semantic relationships captured in the ontology. For a deep understanding
of data management characteristics, we refer to Ramakrishnan et al. (2003);
Harby and Zulkernine (2022). We provide in Table 1 and Figure 6 a com-
parison of the main data management and storage technologies and their
compatibility with DTs.

With the growing complexity and volume of data generated by SGs, ef-
fective data management techniques are essential for accurate representation
and analysis within DT environments. Kolajo et al. (2019) describe the main
challenges to be related to capturing data from heterogeneous sources, en-
suring real-time availability, and handling the large volume and velocity of
data generated by SGs.

Singh and El-Kassar (2019) mention that how to integrate the data forms
another challenge. The database must ensure data consistency and quality,
and leverage ontologies and standardized data models for seamless integra-
tion of diverse data sources. Data management must address the scalability
requirements, real-time analytics capabilities, and efficient handling of large
volumes of data, including distributed storage systems, cloud-based plat-
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Figure 6: Comparison of 4 data management technologies.

forms, and edge computing technologies. Moreover, the approaches have to
handle the growing volume of data, accommodate new devices and sensors,
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and support the expansion of the DT system without compromising perfor-
mance or data accessibility.

Once the data is stored, techniques are used to rework the raw data
such as data cleaning, filtering, normalization, validation, and anomaly de-
tection to ensure the reliability and accuracy of data used in DT systems
(Roh et al. (2019)). Furthermore, stakeholders have to employ techniques
such as real-time monitoring, anomaly detection, predictive analytics, and
optimization algorithms to derive valuable insights thanks to various tech-
nologies like Machine Learning Factory (Lévy et al. (2022)). Another way to
work with data is by combining and integrating data from multiple sources
to create a more comprehensive and accurate representation of the system
(Harby and Zulkernine (2022)), improving situational awareness, fault de-
tection, and predictive capabilities. This process is called the Data Product
approach and is the specificities of Data Mesh, Figure 7 illustrates the differ-
ence between traditional data management (Top-down) and the data product
approach (Bottom-up, or Systemic).

5. Modeling and Applications

Various modeling approaches, such as physics-based models, data-driven
models, and hybrid models, are employed to represent the behavior and dy-
namics of SG systems. Cioara et al. (2021); Sifat et al. (2022); Jafari et al.
(2023) list numerous applications of DT in the context of SG from any mod-
eling approaches.

5.1. Definition

Physics-based models utilize fundamental principles and equations to de-
scribe the physical processes within the grid. They incorporate mathematical
models of power flow, voltage stability, and load forecasting, among others.
These models leverage established theories and empirical data to simulate the
behavior of the grid components accurately. Physics-based models are valu-
able for understanding the underlying physics and enabling comprehensive
analysis of the SG system.

Data-driven models, on the other hand, rely on historical and real-time
data to learn and capture the relationships and patterns within the grid.
Machine learning and statistical techniques are applied to analyze large vol-
umes of data and develop models that can predict future system behavior.
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Figure 7: Data Product approach.

Data-driven models are particularly useful for handling complex and non-
linear relationships within the grid, enabling accurate forecasting, anomaly
detection, and optimization.

Hybrid models, also known as grey-models, combine the strengths of both
physics-based and data-driven approaches. They integrate physical equations
and empirical data to create comprehensive models that capture the com-
plexities of the SG. Hybrid models offer a balance between accuracy and
flexibility, leveraging both domain knowledge and data-driven insights.

A model needs simulations to be valid. Simulation allows for virtual
testing of the DT models in various scenarios, simulating different operating
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conditions and contingencies. It enables the exploration of what-if scenar-
ios and the assessment of system behavior under different parameters and
configurations. Simulation provides a cost-effective and safe environment for
testing and optimizing SG operations.

Validation is critical to ensure that the DT models accurately represent
the physical grid. It involves comparing the behavior and performance of
the DT with real-world data and measurements. Validation techniques in-
clude comparing simulation results with historical data, conducting field ex-
periments, performing statistical analyses, and including expert validation.
Through validation, the reliability and accuracy of the DT models can be
assessed, providing confidence in their effectiveness.

By employing modeling and simulation techniques, DT systems for SGs
offer invaluable insights into the behavior and performance of the grid. They
enable virtual testing, scenario analysis, and performance evaluation, sup-
porting informed decision-making and optimization of grid operations. The
combination of physics-based models, data-driven models, and hybrid mod-
els empowers DT systems to capture the complexity of the SG accurately.
Through simulation and validation, DT models can be refined and improved,
ensuring their reliability and usefulness in real-world applications.

We present real-world case studies and examples that showcase the imple-
mentation of DT systems in SG applications. These case studies demonstrate
the design considerations, ontologies, data management strategies, and mod-
eling and simulation techniques used to develop and deploy DT solutions

5.2. Asset Management and Predictive Maintenance

By creating a virtual replica or representation of physical assets, DTs en-
able real-time monitoring, analysis, and optimization of asset performance.
We refer to the following studies for an in-depth understanding of this con-
cept: Errandonea et al. (2020); Lu et al. (2020b); van Dinter et al. (2022).

DTs provide continuous monitoring of assets, collecting data on their
operating conditions, performance, and health parameters. This data can
be obtained from sensors, IoT devices, and other monitoring systems. By
integrating this real-time data with the DT, operators can gain a compre-
hensive view of asset behavior and identify potential issues or anomalies. For
example, using historical and real-time data, DTs can predict asset degra-
dation and failure patterns. By leveraging advanced analytics and machine
learning algorithms, it identifies early warning signs and provides predictive
maintenance recommendations.
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In other words, DTs enable condition monitoring by comparing real-time
asset data with predefined performance thresholds or models. Any devia-
tion from expected behavior can trigger alerts, enabling operators to take
timely actions. Condition monitoring helps in identifying potential faults,
anomalies, or performance degradation, allowing for proactive maintenance
or repair interventions.

By conducting what-if analyses and simulations, operators can evaluate
the impact of operational changes or maintenance strategies on asset perfor-
mance. DTs facilitate the optimization of asset performance by simulating
different scenarios, analyzing historical data, and identifying opportunities
for improvement. This enables them to make informed decisions to optimize
asset utilization, extend asset lifespan, and maximize operational efficiency.
It supports the entire lifecycle management of assets. From initial design and
installation to operation, asset maintenance, repair, replacement, and retire-
ment. This holistic view enables better asset planning, resource allocation,
and decision-making throughout the asset’s lifecycle.

5.3. Building Information Modeling

BIM provides a comprehensive and structured digital representation of
a building or infrastructure asset, capturing its geometric, spatial, and se-
mantic information. We refer to the following studies for an in-depth under-
standing of this concept: Lu et al. (2020a); Lee and Lee (2021); Sepasgozar
et al. (2023).

The detailed information embedded in BIM models, such as equipment
specifications, maintenance schedules, and performance data, can be linked
to the DT, allowing real-time monitoring and management of assets. This
integration enhances asset visibility, facilitates condition-based maintenance,
and optimizes asset utilization as explained in the previous subsection.

BIM models contain detailed information about building components,
systems, and energy consumption patterns. By integrating BIM with DTs,
energy efficiency analysis can be conducted, to tend to a zero-energy or
positive-energy building as proposed by Pereira et al. (2021); Zhao et al.
(2021). The DT simulates different energy scenarios, evaluates energy perfor-
mance, and identifies opportunities for optimization. This supports decision-
making for energy-efficient operation and design improvements.

BIM assists in demand response and load management strategies as shown
by the works of Esnaola-Gonzalez and Diez (2019). By incorporating real-
time data from the SG, the DT simulate and predict energy demand, allowing
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for proactive load shifting, demand response planning, and optimization of
energy distribution. BIM provides the necessary spatial and semantic context
to accurately model the building’s energy consumption patterns.

BIM models also enable the integration of renewable energy sources and
peer-to-peer sharing (Abbasi and Noorzai (2021)). By incorporating solar
panels, wind turbines, or other renewable energy technologies into the BIM
model, the DT simulates and optimize the energy generation, storage, and
distribution within the grid. This integration supports the effective inte-
gration of different renewable energy sources and the management of their
intermittent nature through batteries and sharing.

The BIM’s benefits need to be expanded to a microgrid or a grid.

5.4. Grid Optimization

DTs provide real-time monitoring of energy generation, transmission, and
distribution within the SG. By integrating data from sensors, meters, and
IoT devices, operators can visualize and analyze energy flows, identify bot-
tlenecks or inefficiencies, and make data-driven decisions to optimize energy
usage. DTs enable real-time monitoring and feedback to the physical sys-
tem. They allow systems to adapt to fluctuations in demand, changes in user
specifications, and unexpected disruptions.

DTs enable the modeling and simulation of demand response scenarios;
we refer to the review of Teng et al. (2021) for a deeper investigation of
this point. By capturing information about consumer profiles, energy de-
mand patterns, and pricing signals, DTs can predict and optimize energy
consumption in response to demand fluctuations. This helps balance supply
and demand, reduces peak loads, and improves grid stability and reliabil-
ity. Moreover, operators anticipate future energy needs, optimize energy
generation and distribution, and plan maintenance or expansion activities
to efficiently meet the growing energy demands. DTs can facilitate parallel
controlling of various elements within a system. This means that different
parts of a complex system can be optimized simultaneously.

By modeling and simulating the behavior of renewable energy generation,
such as solar or wind, DTs help optimize their localization, integration, and
utilization (Yu et al. (2022)). This includes forecasting renewable energy
production, managing intermittency, and optimizing energy storage and dis-
tribution. By creating virtual replicas of microgrid components, including
distributed energy resources, energy storage systems, and local loads, DTs
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enable to optimize energy flows, balance local generation and consumption,
and improve the resilience and self-sustainability of microgrids.

DTs allow for simulation and what-if analysis to explore different opera-
tional strategies and scenarios. Stakeholders can simulate changes in energy
demand, generation capacity, or network configurations to assess their im-
pact on energy optimization. They can assess the energy efficiency of vari-
ous components, such as transformers, substations, or distribution networks,
and identify opportunities for optimization and improvement. This helps in
making informed decisions, planning infrastructure upgrades, and optimizing
energy resources. Moreover, DTs enable grid planning by simulating differ-
ent scenarios and evaluating their impact on grid performance. Stakeholders
can analyze factors such as load balancing, grid congestion, voltage regula-
tion, and energy losses to optimize grid operations, reduce inefficiencies, and
improve overall grid performance.

In summary, DTs rely on extensive data collection and analysis. This
data-driven approach provides insights that are not readily available through
traditional methods. By continuously analyzing data from sensors and other
sources, DTs can identify patterns, inefficiencies, and areas for improvement
that might otherwise go unnoticed.

5.5. Planning and Expansion

What-if scenarios are not limited to existing grids or technologies and can
also simulate how to change, alter, and enhance the grid. We already mention
the use of DTs as feedback to manage or integrate demand-side management
and renewable energies; it can also be used for batteries, storage systems,
and various infrastructure upgrades. In other words, DTs are useful for grid
planning and expansion thanks to the following knowledge:

• Load Forecasting: Coupled with data analysis they are used to predict
future electricity demand, enabling utilities to determine the required
capacity and infrastructure upgrades.

• DER Integration: Knowledge of DER production is analyzed with vari-
ous data such as GIS data, population projections, and energy demand
forecasts. The optimal placement and capacity of DERs need to be
determined to ensure reliable and stable grid operations.
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• Equipment obsolescence: Planning and expanding the grid infrastruc-
ture involve identifying areas with increased load demand, aging equip-
ment, or potential vulnerabilities thanks to predictive maintenance.

• Policy Framework: Planning and expansion in the SG domain require
alignment with regulatory and policy frameworks. Utilities need to
consider regulatory requirements, market structures, and incentive pro-
grams to support investments in grid expansion. In this case, ontologies
play a crucial role.

• Stakeholder Engagement: Collaboration and feedback from various
stakeholders help ensure that planning efforts align with the needs and
priorities of all involved parties.

Planning for system stability and resilience involves considering factors
such as fault tolerance, grid balancing, and contingency planning. Grid ex-
pansion strategies should ensure robustness against disturbances and facil-
itate quick recovery from disruptions, minimizing downtime and improving
reliability.

SG planning is a long-term process that involves considering future en-
ergy demands, technological advancements, and environmental goals. Utili-
ties need to develop comprehensive roadmaps and investment strategies that
account for evolving energy needs and emerging trends.

5.6. Recent work on H2020 MAESHA project

The H2020 MAESHA project focuses on the decarbonization of energy
systems on geographical islands. Its primary goal is to facilitate the widespread
adoption of renewable energy sources by implementing tailored innovative
flexibility services. This is achieved through a comprehensive study and
modeling of local energy systems and community structures. MAESHA will
initially demonstrate these solutions on the French overseas island of Mayotte
and evaluate their potential for replication on five follower islands, represent-
ing a combined population of more than 1.2 million inhabitants across both
geographical Europe and overseas territories. The project comprises 12 work
packages, each described in detail below.

WP1. Study case and requirements, system architecture; It mainly includes
the definition of the use-cases, the related requirements, the definition of
specific relevant KPIs, the design of the architecture, the definition of the
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data handling and processing approach (needs, collection, and consolidation),
and the set-up of an interoperability-by-design framework.

WP2. Modelling of energy systems and performance forecasting; It led to the
creation of an island-scale economy-energy-environment modeling software to
be used by partners and local authorities to explore low-carbon medium and
long-term energy transition strategies.

WP3. User-centred approach for Local Energy Communities; The social, cul-
tural and economic conditions on Mayotte will be studied and a technolog-
ically, economically and socially optimal energy system topology as well as
decarbonisation pathway for the island will be developed.

WP4. Energy markets for geographical islands and associated tailored busi-
ness models; This work package will ensure the commercial viability of the
project and determine the business models and costs implication of the de-
veloped solutions by setting up an underlying market design and business
models for the different market players, aligning the solutions with the local
regulatory framework and providing policy and regulatory recommendations
for an efficient market uptake in islands.

WP5. Energy Management Systems to enhance the grid flexibility; The gen-
eral objective of this WP is to design flexibility services that can be offered
according to the market design of WP4, specifically tailored towards the
reality of geographical islands.

WP6. Additional flexibility through networks synergies improvement and
storage; This WP aims at developing solutions able to provide additional
flexibility to the grid thanks to networks’ synergies improvement and storage
systems.

WP7. Communication and control Platform development; The overall ob-
jective of this work package is to deploy a utility-scale Control Platform,
that will enable efficient management of various flexibilities aggregated by
different systems throughout the island.

WP8. Systems integration and validation; The main objective of WP8 is to
supervise the integration across all solutions and innovative prototypes.

WP9. Demonstration on Mayotte.
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WP10. Replicability study for follower islands and expansion to more islands.

WP11. Communication, dissemination & exploitation of the results.

WP12. Project Management.
In the context of the DTOps design, the MAESHA project’s WPs are

mapped as shown in Figure 8. While the project was initially defined without
the use of a DT, its role remains crucial. WP1, WP2, WP3, and WP4
establish the design requirements. The output of the DT, particularly in
the planning and formulation phases, provides valuable insights into how
the technologies in WP5, WP6, and WP7 can be integrated into the island
without the need for real-world tests. Additionally, given the development of
multiple technologies, algorithms, and incentives simultaneously, it becomes
challenging to anticipate how the grid will respond without simulation. Once
the DT yields the desired behaviors, these technologies can be tested in real
conditions. WP8, WP11, and WP12 oversee the development of the DT and
facilitate communication among stakeholders across each WP.

Figure 8: DTOps in MAESHA H2020 project.
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6. Bottlenecks

DT technologies hold great promise for SG applications, but they also
come with several challenges and limitations that need to be addressed. This
section discusses these challenges and highlights potential research directions
and opportunities for further advancement in DT design, ontologies, data
management, modeling, and simulation in the context of SGs.

Data Management. SGs generate vast amounts of data from diverse sources
such as sensors, meters, and devices. Managing and processing this data
through ontologies in real-time poses a significant challenge. Ensuring data
quality, integrity, security, and scalability are crucial aspects that need to be
addressed. Moreover, DTs for SGs are expected to provide real-time moni-
toring and control capabilities. Ensuring timely data acquisition, processing,
and analysis to support real-time decision-making and control actions re-
quires robust infrastructure and advanced algorithms.

Interoperability and Standardization. SGs consist of multiple heterogeneous
systems, devices, and applications from various vendors. Ensuring seam-
less interoperability and integration between these different components can
be challenging. Developing standardized interfaces and protocols to enable
effective communication and data exchange is essential.

Complexity of Modeling. SGs are complex systems with numerous intercon-
nected components and dependencies. Creating an accurate DT that models
and represents the entire SG system can be challenging due to its complexity.
Handling the scale of data and ensuring efficient processing and analysis also
pose significant challenges. Developing accurate models and validating them
against real-world data can be challenging due to the uncertainties, dynamic
nature, and diverse operating conditions of the SG. DT models also require
regular calibration and updating to maintain accuracy and reliability. As
SGs expand and evolve, the DT infrastructure must be scalable to accommo-
date the increasing number of devices, sensors, and data sources. It should
also be flexible enough to adapt to changes in the grid configuration, new
technologies, and evolving business requirements.

Definition of the scenarios. With the increasing integration of renewable en-
ergy sources and the transition towards a more decentralized grid, DTs must
be able to handle the complexities of future grid scenarios. Incorporating
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advanced modeling techniques, forecasting methods, and optimization algo-
rithms to support the energy transition pose additional challenges.

Collaboration. Successful implementation of DTs requires collaboration and
engagement with various stakeholders, including utilities, regulators, technol-
ogy providers, and end-users. Ensuring effective communication, consensus
building, and alignment of objectives among stakeholders can be a complex
challenge.

Data Governance and Ethics. DTs rely on extensive data collection and anal-
ysis, raising concerns about data governance and ethics. Ensuring transpar-
ent and responsible data usage, protecting consumer privacy, and addressing
ethical considerations associated with data-driven decision-making are im-
portant challenges.

Security and Privacy. Securing the DT infrastructure, communication net-
works, and data exchange protocols is a significant challenge. Ensuring com-
pliance with privacy regulations and protecting sensitive customer informa-
tion is also crucial.

Policy. The implementation of DTs may require alignment with existing reg-
ulatory and policy frameworks and, on another hand, the successful adoption
of DTs relies on the readiness and acceptance of the human workforce. Over-
coming resistance to change, providing adequate training, and fostering a cul-
ture of data-driven decision-making are challenges that need to be addressed.
Adapting regulations to accommodate DT technologies, addressing liability
concerns, and ensuring compliance with data protection and cybersecurity
regulations pose challenges in the regulatory domain.

7. Conclusion

In this article, we have explored the role and significance of effective DT
design, ontologies, data management, modeling, and simulation in enabling
SG applications. Through our analysis, we have uncovered key findings and
gained valuable insights into the potential of DT technologies for the future
development and optimization of SG systems.

First and foremost, we have recognized that DT technologies offer a trans-
formative approach to understanding and managing SGs. By creating virtual
replicas of physical systems, DTs enable real-time monitoring, modeling, and
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control, leading to enhanced operational efficiency, reliability, and sustain-
ability.

The design considerations for DT systems in SGs have emerged as cru-
cial factors for success. We must carefully consider system architecture, data
acquisition, integration of heterogeneous data sources, and scalability to de-
velop effective DT systems that accurately represent the complexities of the
SG.

Ontologies play a vital role in organizing knowledge and facilitating se-
mantic interoperability in DT systems. By leveraging existing ontologies
specific to SG domains, we can enhance the capabilities of DTs and enable
seamless integration with various applications and data sources, ultimately
improving decision-making processes and system performance.

From data acquisition to preprocessing, fusion, storage, and analytics,
managing vast amounts of SG data allows for valuable insights and informed
decision-making. Advanced data analytics techniques, such as real-time ana-
lytics, machine learning, and predictive analytics, further enhance the value
derived from DT systems.

Accurate system modeling enables a deep understanding of the SG be-
havior, while simulation facilitates virtual testing, scenario analysis, and per-
formance evaluation. The validation of DT models ensures their reliability
and usefulness in supporting decision-making processes.

In conclusion, we provide an effective design of DT systems, called DTOps,
utilization of ontologies, efficient data management practices, and accurate
modeling and simulation techniques.
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