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ABSTRACT
The health and medicine sector is currently experiencing significant
transformations, such as the integration of artificial intelligence
in the decision-making process. In this complex system, there is a
continuous data flow consisting of quantitative, qualitative, ordinal
types, and time series. Hierarchical clustering is a useful tool to
handle this complexity. However, clustering mixed data containing
time series without distorting the inherent nature of the data poses
a challenge. Although there are existing clustering techniques for
mixed data or time series, the literature does not address the clus-
tering of mixed data and time series. This paper presents several
methodologies for such data clustering, including a novel algo-
rithm based on pretopology. This hierarchical algorithm allows for
customizable logical clustering, enabling health experts to better in-
terpret and utilize the results for classification and recommendation
by analyzing the hierarchy of clusters.

CCS CONCEPTS
• Information systems applications→ Data mining; Cluster-
ing; • Probability and statistics→ Dimensionality reduction; •
Computing methodologies→Machine learning.
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1 INTRODUCTION
The popularity of mixed data clustering algorithms has increased
due to the prevalence of real-world datasets containing both nu-
meric and categorical features. Various methods have been pro-
posed for clustering mixed data, though a unified research frame-
work is still lacking in this field [3]. Researchers have used various
types of clustering approaches for mixed data for heart disease [2],
digital mammograms [13], acute inflammations [26], dermatology
[28], cancer samples [35] and autism spectrum [32] for examples.

Time series features have also been an active area of research,
with various methods proposed to address the challenges associated
with handling time series. However, there is little to no scientific
literature addressing the clustering of elements defined by categor-
ical, numerical, and time series features, despite the presence of
such data in various fields studying complex systems. For example,
a patient in a hospital will not be described solely by fixed features,
nor will they be described by time series alone. Fixed features are
essential to cluster complex systems; for humans, it can be the
date of birth, place of birth, or blood type, medical history, genetic
disease, or disease predisposition.

Many features describing humans are time series, such as weight,
blood glucose, blood pressure, and heart rate. In many contexts,
these features are essential to administer a diagnosis. Since those
data are often transformed into numerical values, increasing the
curse of dimensionality, we propose various processes to cluster
data involving fixed and fluctuating features, as it is necessary to
identify homogeneous groups of complex elements.

Another challenge tackled in this article is the explainability,
exploitability, and parametrization of heterogeneous and complex
system clustering. Since unsupervised methods identify clusters in
data without predefined labels, no clustering is inherently consid-
ered as the ’true’ clustering. Ideally, the number of clusters, where
they separate, and how depends on the specific needs and vision of
each user and their context.

Hierarchical clustering is useful for handling this complexity,
as it allows the user to identify coherent structures within each
cluster, providing scalability and interpretability to the clustering.
Allowing the user to adjust several clustering method parameters
and easily understand their role in constructing clusters is also
a way to enable more parametrization and interpretability of the
clusters.

https://doi.org/XXXXXXX.XXXXXXX
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In this article, we will present the state of the art on mixed
data clustering and time series clustering in Section 2. We will
then present different possible strategies for clustering datasets
composed of fixed and evolving features in Section 3. In this section,
we also present a method based on the theory of pretopology that
allows for hierarchical clustering of systems defined by mixed fixed
and evolving features, and that allows for high parametrization,
including a cluster construction based on logical rules defining
the role of each feature in the clustering. The Section 4 shows the
results for each methods and a discussion for future challenges. The
Section 5 concludes the paper.

2 LITERATURE REVIEW
In the existing scientific literature, there is minimal focus on cluster-
ing data composed of numerical features, categorical features, and
time series. However, there is substantial literature on mixed data
clustering and time series clustering. In this section, we present
relevant concepts and state-of-the-art methods for clustering and
cluster evaluation of mixed data and time series.

2.1 Curse of dimensionality
The curse of dimensionality is a phenomenon that arises in high-
dimensional spaces, particularly in clustering and machine learning
tasks, where the increase in dimensions leads to exponentially larger
search spaces, making it difficult for algorithms to operate efficiently
[4, 33]. Furthermore, distance metrics that work well in lower-
dimensional spaces may not be as effective in higher-dimensional
spaces, leading to poor performance in clustering tasks [31]. This
problem is particularly relevant in the context of complex data
containing time series, as time series often have high dimensionality
due to the numerous time points involved [33]. A solution to break
this curse is often dimensionality reduction (DR).

DR is often employed as a preliminary step for clustering high-
dimensional data. It can also be used to reduce mixed data. Factor
Analysis of Mixed Data (FAMD) [10] is a DR technique specifi-
cally designed for such tasks. Additionally, although not initially
adapted for mixed data reduction, Uniform Manifold Approxima-
tion and Projection (UMAP) [21] or Pairwise Controlled Manifold
Approximation Projection (PaCMAP) [34] can be adapted. UMAP
is adapted by using the Huang Distance, that is suited for mixed
data, and PaCMAP can be initialized with FAMD. Then, these tech-
niques are able to convert a high-dimensional mixed dataset into
a low-dimensional numerical dataset. Subsequently, state-of-the-
art numerical clustering algorithms, such as K-means, can be ap-
plied to the transformed dataset, and cluster visualization on the
low-dimensional data can be performed. DR is also a prevalent
preprocessing approach for time series clustering, aiming to de-
crease the complexity and computational cost associated with high-
dimensional data.

2.2 State of the Art in Mixed Data Clustering
Let us introduce several well-known methods for mixed data clus-
tering.

Partitioning Clustering for Mixed Data. aims to divide a
dataset into a predetermined number of non-overlapping clusters.
K-Prototypes [15] extends the traditional K-Means algorithm to

handle both numerical and categorical features by combining K-
Means for numerical data and K-Modes [14] for categorical data.
ConvexK-Means [22] iteratively refines the centroids ofK clusters
(with a convex hull) until convergence or a maximum number of
iterations is reached. These methods provide effective clustering
solutions for mixed data.

Model-Based Clustering for Mixed Data. utilizes statistical
models to describe the distribution of data points within each clus-
ter, accommodating numerical, categorical, and time series features.
MixtComp [5] is a statistical method that combines the strengths
of model-based clustering and Bayesian approaches, handling dif-
ferent types of data and missing data. KAMILA [11] is a clustering
algorithm designed to handle mixed data by extending the stan-
dard K-means algorithm, combining K-means clustering with the
Gaussian-multinomial mixture model. These methods provide ef-
fective clustering solutions for mixed data.

Hierarchical Clustering for Mixed Data. enables the explo-
ration of subgroups that constitute a cluster. Philip and Ottaway
[27] proposed a method based on Gower’s similarity measure,
which effectively computes the similarity between mixed data
points for hierarchical clustering.DenseClus1 is a density-based hi-
erarchical clustering algorithm that performs DR using UMAP and
employs the accelerated HDBSCAN algorithm [20]. Agglomera-
tive Hierarchical Clustering (AHC) for mixed data is a powerful
technique that effectively groups data points with different feature
types based on parameterised distance metrics [8]. These meth-
ods enable meaningful clustering of mixed data by accounting for
differences between categorical and numerical features.

2.3 State of the Art on Time Series Clustering
Time series clustering has been an area of active research for several
years due to its widespread applicability in fields such as finance,
healthcare, and IoT [1]. The primary goal of time series clustering
is to group similar time series, considering their temporal dynamics
and patterns. This section reviews the state of the art in time series
clustering.

Distance-based Clustering. is one of themost common approaches
for clustering time series. This approach computes pairwise dis-
tances between time series, using a distance metric to measure sim-
ilarity. The most widely used distance metrics for time series clus-
tering are Euclidean distance, Dynamic Time Warping (DTW)
[23], and Longest Common Subsequence (LCSS) [9]. DTW is
particularly popular because it allows for non-linear alignment
between time series, providing a more flexible similarity measure
compared to the Euclidean distance.

Feature-based Clustering. involves extracting time series fea-
tures (TSF) and using these features to represent the time series in
a lower-dimensional space. This approach can reduce the dimen-
sionality of the data and the computational complexity associated
with clustering. Common features extracted from time series in-
clude statistical features (e.g., mean, standard deviation), frequency
domain features (e.g., Fourier transform, wavelet transform), and
shape-based features [12].

1https://github.com/awslabs/amazon-denseclus
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Multivariate time series feature extraction. involves deriving ad-
ditional features or new time series from the analysis of links be-
tween two or more time series. Specific features can be extracted
depending on the case study; for instance, in building classifica-
tion and clustering, features are often calculated based on outside
temperature and energy consumption. In general, the extracted
features involve the evaluation of the correlation between differ-
ent time series [30]. The use of autoregressive modeling to form
augmented-feature vectors [16] is also an option. After feature
extraction, traditional clustering algorithms, such as k-means or
hierarchical clustering, can be applied to the reduced feature space.

Model-based Clustering. methods assume that each time series
is generated by an underlying model, and the goal is to group
time series based on the similarity of their generative models. Some
popular model-based clustering techniques include clustering based
onHiddenMarkovModels (HMM) [24], autoregressivemodels
[18], and Gaussian Process models [19]. These methods often
require fitting models to each time series and comparing the models
to compute pairwise similarities, which can be computationally
expensive.

2.4 Cluster evaluation
Evaluating the quality of clusters is more challenging than evalu-
ating classifications due to the absence of ground truth for com-
parison. Instead, the focus is on the quality of a partition, based
on metrics such as dispersion and distances within and between
clusters [25].

Calinski-Harabasz (CH). The CH index [6] is a well-established
metric for evaluating the definition of clusters. The index, also
known as the Variance-Ratio Criterion, is computed as the ratio of
the sum of between-cluster dispersion andwithin-cluster dispersion
for all clusters, where dispersion is the sum of squared distances.
A clustering with a high CH score indicates a model with well-
defined clusters. This method provides a robust approach to assess
the quality and explainability of mixed data clustering. A higher
CH score is indicative of a model that exhibits more distinct and
well-defined clusters.

Davies-Bouldin (DB). The DB index [7] is used to assess the
separation of clusters. The similarity between a pair of clusters
is the ratio of the sum of the average distance in each of the two
clusters and the distance between the centroids of the two clusters.
The DB index is then computed as the average of the maximum
similarities for each individual cluster. Lower values of the DB index
signify better-separated clusters, with the minimum possible score
being zero.

Silhouette Coefficient (SC). The SC, first presented in [29], indi-
cates how well-defined the clusters are. A score is calculated for
each data point as shown in Equation 1, where 𝑤 represents the
average distance of a point to other points within its cluster, and 𝑐
represents the average distance to points in the closest cluster.

𝑆𝐶 =
𝑐 −𝑤

𝑚𝑎𝑥 (𝑤, 𝑐) (1)

The SC for a group of points is determined by averaging the SC
of each individual sample. The coefficient ranges between -1 for

improper clustering and +1 for highly compact clustering. A score
of zero implies that clusters are overlapping.

One issue with mixed data clustering is that these metrics are
defined for numerical spaces. Therefore, the application of the DR
techniques described earlier is necessary for any cluster evalua-
tion. Similarly, for complex data, it must be reduced before the
clusters are evaluated. In order to calculate the CH, DB, and SC
scores, datasets are transformed into Euclidean spaces using FAMD,
which ensures that the output space has the same number of dimen-
sions as the original space. FAMD is chosen for its known inertia,
deterministic nature, and minimal reliance on hyper-parameters.
Additionally, since the SC score is the only index in the study that
accepts a pairwise distance matrix as input, it is computed using the
Gower matrix to prevent any bias towards FAMD or provide extra
insights when FAMD has low inertia. We will call it the Gower
Silhouette Coefficient (GSC).

2.5 Pretopology-based clustering PretopoMD
This subsection introduces the essential concepts and definitions in
pretopology, such as pretopological space and pseudoclosure, before
describing the primary algorithm for pretopological hierarchical
clustering.

A pseudoclosure function, denoted as 𝑎 : ℘(𝑈 ) → ℘(𝑈 ), oper-
ates on a set𝑈 of elements and adheres to the conditions 𝑎(∅) = ∅
and ∀𝐴 | 𝐴 ⊆ 𝑈 : 𝐴 ⊆ 𝑎(𝐴), where ℘(𝑈 ) symbolizes the power set
of U. A pretopological space consists of a tuple (𝑈 , 𝑎(.)), with𝑈 rep-
resenting a set of elements and 𝑎(.) being a pseudoclosure function
on 𝑈 . In this space, closure is determined by iteratively applying
the pseudoclosure operator to the set and its subsequent images
until no further expansion occurs. The closure of a subset 𝐴 of𝑈 is
the smallest closure containing𝐴, represented as 𝐹 (𝐴). The process
of constructing a hierarchy involves recursive pseudoclosure steps
that connect any set of elements to a larger set.

The framework for formalizing a pretopological space, adapted
from Julio Laborde’s work [17], characterizes a pretopological space
with a tuple (𝐺,Θ, 𝐷𝑁𝐹 (.)). Here, 𝐺 denotes a collection of 𝑛
weighted directed graphs, Θ signifies a set of 𝑛 thresholds asso-
ciated with each graph, and 𝐷𝑁𝐹 (.) represents a boolean function
defined as a positive Disjunctive Normal Form (DNF) involving
𝑛 boolean functions 𝑉1 (𝐴, 𝑥), ...,𝑉𝑛 (𝐴, 𝑥), each associated with a
graph. The truth value depends on the set 𝐴 and element 𝑥 .

To determine if an element 𝑥 ∈ 𝑈 belongs to the pseudoclosure
of a set 𝐴, follow these steps: For each 𝑉𝑖 (𝐴, 𝑥), 𝑉𝑖 (𝐴, 𝑥) = 𝑇𝑟𝑢𝑒 if
and only if

∑
𝑒𝑥𝑦 ∈𝐺𝑖 ,𝑦∈𝐴𝑤 (𝑒𝑥𝑦) ≥ \𝑖 , where 𝑒𝑥𝑦 denotes the edge

from 𝑥 to 𝑦, and 𝑤 (𝑒) represents the edge weight 𝑒 . The element
𝑥 ∈ 𝑈 belongs to the pseudoclosure of 𝐴 if and only if the 𝐷𝑁𝐹 (.)
evaluates to True.

In summary, this process checks if the sum of edge weights
connecting element 𝑥 to the elements within 𝐴 is greater than the
threshold associated with the graph in each graph. If this condition
is satisfied, the boolean variable corresponding to that graph takes
the value True; otherwise, it takes the value False. The element
belongs to the pseudoclosure if 𝐷𝑁𝐹 (.) evaluates to True given the
values of the boolean functions 𝑉𝑖 (𝐴, 𝑥).

The primary insight obtained from this pretopological frame-
work and its associated algorithm is that pretopology enables the
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Figure 1: Clustering onMixed Features and Time Series based
on distance or model.

abstraction of the complex nature of the elements being studied by
focusing on the relationships between them based on their char-
acteristics. Each characteristic has its own weighted graph, which
allows the calculation of a distance for each characteristic. For exam-
ple, a Manhattan distance can be computed for a pair of longitude
and latitude coordinates, while a corresponding volume difference
can be calculated for a 3D space describing an object’s dimen-
sions. Similarly, the distance between two highly time-dependent
series can be measured using Euclidean space, while Dynamic Time
Warping (DTW) can be employed to compare time series where the
overall profile is more relevant. Once this set of graphs is defined,
the Disjunctive Normal Form (DNF) establishes the logical rules by
which pseudoclosure, and consequently hierarchical clustering, are
generated.

3 METHODS
In this section, we will introduce various approaches that appear
relevant for clustering complex data. These approaches are combi-
nations of the different components presented in the state of the
art.

Method1: Clustering on Mixed Features and Time Series using each
time step as dimension. (Figure 1)

This approach involves using each time step of the time series as
a numerical feature and applying mixed clustering methods such
as K-prototype.

Advantages: Simple to implement and use state-of-the-artmixed
clustering methods.

Disadvantages: In this case, the "weight" of each measure of the
time series is the same as other features, and simple numerical or
categorical features will be overshadowed due to the sheer volume
of time series values, leading to inadequate consideration in the
resulting clusters.

XAI:Medium.

Method2: Clustering on Mixed Features and Time Series using
specific distances. (figure 1)

In this approach, specific distances are calculated for particular
features or groups of features. These distances are subsequently
aggregated in the clustering process, using either a weighted sum
or logical rules.

Advantages:All available information is fully exploited to create
the most relevant clusters possible.

Disadvantages: This approach requires a deep understanding of
the dataset and specification of the appropriate AHC or PretopoMD.

XAI: High to very high.

Method3: Clustering on numerical data only via Dimensionality
Reduction. (figure 2)

Figure 2: Clustering on numerical data only via DR.

Figure 3: Clustering on mixed features and pre-clustered
Time Series labels as categorical features.

In this method, we use dimensionality reduction (DR) to create
a low-dimensional numerical representation of all features (numer-
ical, categorical, and time series). To apply DR on time series, we
consider a time series as a point in a high-dimensional space, where
each time step is a dimension.

Advantages: State-of-the-art numerical clustering methods can
be applied.

Disadvantages: DR of long time series can be challenging due
to the "curse of dimensionality" (see Section 2).

XAI: Very low.

Method4: Clustering on mixed features and pre-clustered Time
Series labels as categorical features. (figure 3)

In this method, we apply one or several time series clustering
methods on each time series. We obtain a label corresponding to
which cluster the time series belongs to. This label is then consid-
ered as a categorical feature. Mixed data clustering methods are
then used on the enriched dataset.

Advantages: The similarity between time series is considered
through the time series clustering methods. State-of-the-art mixed
dataset clustering methods can be applied.

Disadvantages: The choice of methods (including metrics and
hyperparameters) can affect the quality of time series clusters labels.

XAI: Very high.

Method5: Clustering onmixed features and pre-clustered time series
labels as categorical features using DR. (figure 3)

In this method, the same preliminary steps as in method 4 are
executed to obtain time series labels. Next, a DR method is applied
to create a numerical dataset on which numerical clustering is
performed.

Advantages: State-of-the-art numerical clustering methods can
be applied.

Disadvantages: DR can create a loss of information and explain-
ability.

XAI: Low.

Method6: Clustering on Mixed Features and Time Series Features.
(figure 4)

In this method, as in methods 4 and 5, we do not apply clustering
on time series in their raw form. Instead, we extract TSFs to capture
their essence in numerical and categorical representations. By doing
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Figure 4: Clustering on Mixed Features and Time Series Fea-
tures

so, we enable the application of mixed clustering methods on the
extracted data.

Advantages: Mixed clustering methods can be applied. The
features extracted are specific to the context and therefore can
allow the clustering to be relevant from a field point of view

Disadvantages: The amount of information lost during prepro-
cessing is important, though varying depending on the nature of
the time series and the quality of the feature extraction process.

XAI: High.

Method7: Clustering on Mixed Features and Time Series Features
using DR. (figure 4)

We add a dimensionality reduction step to the sixth method.
Advantages: State-of-the-art numerical clustering methods can

be applied.
Disadvantages: Information loss both during feature extraction

and DR
XAI: Low.

4 RESULTS AND DISCUSSION
4.1 Presentation of the Test Dataset
Since health datasets can be technically long to explain and to
display, we present a generated dataset with categorical, numerical
features and time series.

To evaluate the clustering methods, we generated a dataset con-
sisting of elements characterized by four features: their position in a
2D space (numerical), their size (numerical), their shape (categorical
with four possible values), and a time series consisting of a hundred
data points. The dataset comprises 50 elements. The motivation
for selecting such a dataset was to enable visualization without
the need for DR, allowing for a direct understanding of the cluster
construction (see Figures 5 and 6). This approach demonstrates
how the logical rules defining the PretopoMD algorithm can enable
customized clustering that addresses specific field requirements.

4.2 Cluster Quality Indicators
Using the evaluation metrics presented in Section 2.4, we assessed
the outcomes of various clustering algorithms.

To calculate the CH, DB, and SC scores, we transformed datasets
into Euclidean spaces using FAMD, ensuring that the output space
has the same number of dimensions as the original space. We chose
FAMD as the dimensionality reduction method because it is not too
dependent on hyperparameters, because the inertia of the model is
known (as it is a factorial method), and for its deterministic nature.

Moreover, since the SC score is the only index in this study that
can accept a pairwise distance matrix as input, we also computed it
using the Gower matrix. This may prevent any bias towards FAMD

Figure 5: In this example, the hierarchical clustering has been
made using the DNF condition Position AND TS. Thus, the
subcluster elements are spatially close and have similar time
series.

and provide additional insights in cases where FAMD achieves low
inertia.

It should be noted that in certain situations, an algorithm might
produce a single cluster or only outliers. In such cases, we present
the worst possible score or an infeasible value. The results presented
here are from a generated dataset (subsection 4.1, more results and
information are available in the GitHub repository2.

4.3 Clustering on Features and Time Series:
Pretopological Clustering

Here we will present the results of PretopoMD. We have created
four prenetworks for this instance: one for the position features,
one for the size feature, one for the shapes of the elements, and
one for the time series. For each prenetwork, a distance matrix
is calculated. We use Euclidean distance for numerical features,
Hamming distance for categorical features, and Dynamic Time
Warping (DTW) for time series.

Different DNFs were used, and the DNF that scored highest
on CH, SC, and GSC was the one using only TS, indicating that
clustering based solely on the time series was more effective than
using more complex clustering methods. The only score that did
not favor this DNF was DB, which preferred Position AND Size
AND TS OR Shape. This DNF provided better cluster separation
because it had more AND rules, which made it more likely to divide
the dataset into many clusters with similar position, size, and time
series characteristics.

However, other DNF combinations could be chosen depending
on the user’s needs, as the relevance of the clustering varies ac-
cording to the application. For illustrative purposes, a clustering
using the simple Position AND Time Series rule is shown in Figures
5 and 6, identifying 8 clusters. Each cluster consists of elements

2https://github.com/Loup-Noe/clustering-mixed-data-comprising-time-series
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Method CH DB SC GSC

Method 1
AHC_Gow_3 8.01 2.69 0.12 0.93
Kamila 8.01 2.69 0.12 0.93
K-Prototypes 8.01 2.69 0.12 0.93
PretopoMD_Euclid_Hamm 4.27 2.16 -0.04 -0.26

Method 2 AHC
AHC_Gow_DTW_6 3.61 4.64 -0.03 0.38
AHC_Gow_DTW_5 4.38 4.55 0.01 0.52
AHC_Gow_DTW_4 5.79 3.07 0.06 0.73
AHC_Gow_DTW_3 8.01 2.69 0.12 0.93

Method 2 PretopoMD
Pos_&_Size_or_Shape_&_TS 4.10 4.90 0.06 0.54
Pos_or_Size_&_Shape_or_TS 4.10 4.90 0.06 0.54
Pos_&_Size_&_TS_or_Shape 7.48 1.01 0.12 0.19
Pos_&_Size_or_Shape_&_TS 1.20 3.22 -0.27 -0.49
Pos_&_TS 2.58 3.75 -0.14 0.28
TS 8.01 2.69 0.12 0.93

Method 3
DenseClus 0.00 -1.00 -1.00 -1.00
FAMD-KMeans 26.84 1.03 0.48 -0.07
PretopoMD-FAMD 28.06 0.81 0.51 -0.07
PretopoMD-Laplacian 0.40 3.62 -0.12 -0.28
PretopoMD-UMAP 7.49 2.76 0.11 0.87
PretopoMD-PaCMAP 25.84 1.03 0.47 -0.08
PretopoMD-Louvain 2.97 3.30 -0.16 0.21

Method 4
DenseClus 0.00 -1.00 -1.00 -1.00
AHC_Gow_3 1.40 5.77 0.01 0.00
K-Prototypes 1.08 6.57 0.00 0.01
PretopoMD_Eucl_Hamm 1.80 2.49 -0.25 -0.51

Method 5
FAMD-KMeans 1.08 6.57 0.00 0.01
PretopoMD-FAMD 3.86 2.07 -0.06 -0.15
PretopoMD-Laplacian 1.05 5.81 -0.18 -0.34
PretopoMD-UMAP 0.95 7.38 -0.09 -0.12
PretopoMD-PaCMAP 11.04 1.79 0.23 -0.04
PretopoMD-Louvain 1.08 5.32 -0.05 -0.15

Method 6
AHC_Gow_3 8.43 2.51 0.11 0.57
K-Prototypes 7.67 2.51 0.08 0.38
PretopoMD_Eucl_Hamm 5.99 2.10 0.10 0.11

Method7
DenseClus 0.00 -1.00 -1.00 -1.00
FAMD-KMeans 16.73 1.37 0.32 0.08
PretopoMD-Laplacian 2.21 3.66 0.02 0.01
PretopoMD-UMAP 6.34 2.65 0.09 0.49
PretopoMD-PaCMAP 15.79 1.40 0.32 0.06
PretopoMD-Louvain 6.45 2.21 0.06 0.42
PretopoMD-FAMD 2.48 2.36 -0.03 -0.13

Table 1: Cluster evaluation scores of the different methods

Figure 6: Visualisation ofmixed hierarchical clustering using
time series.

that are close in space and have similar time series patterns. This
observation also applies to the subclusters within the larger clusters.
The result of a more complex DNF, corresponding to more specific
needs, is also presented in Figure 8.

4.4 Discussion
We observe that PretopoMD-FAMD achieves the best results in
terms of CH, DB, and SC Scores in Table 1 of results. This can
be attributed to the fact that clustering in conjunction with DR
is highly effective on time series data as it mitigates the curse
of dimensionality. It is also worth noting that the CH, DB, and
SC Scores are all calculated on the dataset after applying FAMD,
thereby favoring clustering methods that utilize FAMD in their
preprocessing. Had we evaluated the clusters using CH, DB, and
SC by reducing the dataset with another dimensionality reduction
method, we would have obtained different results. Additionally, we
can note that PretopoMD-FAMD does not have a good score on
GSC despite being the best on the other metrics.

If we normalize and add up our scores, the best algorithms in de-
scending order are: PretopoMD-FAMD, FAMD-KMeans, PretopoMD-
PaCMAP, FAMD-KMeans with TSF instead of the whole time series,
and PretopoMD-PaCMAP with TSF instead of the whole time se-
ries. Just below these are AHC_Gow_DTW with three clusters,
Phillip and Ottaway, Kamila, K-Prototypes, and PretopoMD using
only time series values. These methods have identified clusters that
correspond exclusively to the time series.

Interestingly, these methods that identified only the time clusters
(AHCwith three clusters, Phillip and Ottaway, Kamila, K-Prototype,
and PretopoMD using the DNF Time Series) achieved the highest
GSC Score, all at equal values. It means that the other features are
not only deemed irrelevant by these clustering methods but also
the GSC Score. For example, AHC with more than three clusters
employ other features for clustering but are considered worse than
AHC_3.

There are several interpretations of this phenomenon. First, K-
Prototypes, Kamila, and Phillip and Ottaway treat each time step
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Figure 7: The DTW distance between the time series slightly
outweighs the Gower distance between the mixed features in
this dataset. All evaluation metrics rewards the separation
in 3 clusters

as a feature, making non-time series features less significant in the
resulting clusters due to their comparatively low numbers.

As for AHC, it was specifically designed to address this issue by
incorporating a distance specific to time series in addition to the
Gower distance for other features. By examining the dendrogram in
Figure 7, we can observe that the three clusters are well-separated
because the distance between time series is more pronounced than
the distance between other features. However, this is more attrib-
utable to the test dataset, in which the time series are extremely
similar, rather than the Hierarchical Clustering methods itself. In
this instance, when clustering into three clusters, it made sense to
cluster based on time series similarity. When more clusters were
demanded from AHC, it provided a finer separation of the dataset,
taking into account other features. However, no indicators rewarded
such behavior. This is the case with and without normalized dis-
tance in AHC. What was not attempted here was assigning weights
to different distances based on specific needs or characteristics. In
a case study, one could decide to give more weight to a certain set
of parameters for them to have a more significant influence on the
resulting hierarchical clustering.

Another point concerning the evaluation metrics is that none of
the extracted features used for some of the clustering were added
to the dataset. Adding the dataset with pre-identified time series
clusters or extracted features might have changed the way the
clusters are evaluated.

4.5 Challenges and Future Works
Exploring further cluster evaluation metrics and aggregating them
might be a solution for hyperparameterization. The objective might
not simply be to have the highest average score but to find a clus-
tering that has scores relatively high for all metrics.

However, one must accept that the quality of clustering is highly
dependent on the objectives of the user, especially in the case of
complex data. Depending on the case study, the relevance of one
aspect of the data can vary significantly. Visually analyzing the data
in its raw decomposed form, such as in time series, or visualizing

Figure 8: A subcluster of the hierarchy build with the DNF
(Position AND Shape AND TS) OR (Size AND TS) prioritizes
TS, then Size then equally Position and Shape

it through different DR techniques can allow users to view it from
various perspectives (quite literally) and realize how one clustering
might seem more appropriate when viewed through FAMD and
another more relevant when viewed through UMAP. Ultimately, it
is the meaning behind the features and the coherence of the final
clusters that give relevance to a clustering method.

Therefore, hierarchical clustering techniques such as PretopoMD,
which function extremely well with DR, might actually be more
relevant without DR when complex rules and distances must be
used to identify clusters according to specific requirements. AHC
might also be used in this manner simply through the use of weights.
Both have the advantages of allowing the user to zoom in on a
cluster to identify subgroups, which is often relevant in complex
data contexts. For example, the AHC dendrogram allowed us to view
how the relatively high distance between the time series cluster
influenced the separation of the complex dataset and howweighting
the different distancemight have changed this separation (see figure
7).

Regarding pretopology, the example in figure 5, as well as more
complex DNFs allow for some very interesting hierarchie. For ex-
ample, a hierarchical clustering built with the DNF (Position AND
Shape AND TS) OR (Size AND TS) (see figure 8) will return the same
clusters as the DNF TS, but will return a hierarchy with subclusters
of elements that are necessarily close in terms of time series but are
also as close as possible in terms of position, size, or shape, with size
being the first criterion of aggregation. That is, the smaller clusters
are necessarily close in time series and are mostly close in size. Then
they expand by integrating other elements according to the other
criteria. Adjusting the DNF in this manner enables the construction
of hierarchies tailored to meet the complex requirements specific
to various case studies. Furthermore, besides the DNF, the diverse
parameters of PretopoMD facilitate extensive customization of the
dispersion, size, and number of outliers within the clusters.

An effective approach to address the explainability issues associ-
ated with clustering, particularly in the case of complex data, is to
have a comprehensive understanding of both the dataset and the
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various steps involved in a clustering method, while adhering to
logical rules and parameter settings. Developing improved visual-
ization tools that can help in understanding the value of clusters in
high-dimensional contexts is also an important area of research.

In our future work, we plan to explore these solutions while
working on a large and diverse dataset that includes energy con-
sumption, weather time series, and building mixed characteristic
typologies. This will allow us to focus on meaningful feature extrac-
tion and construct clusters in collaboration with field experts, by
analyzing the significance of the clusters and adjusting parameters
and logical rules accordingly. Additionally, we will investigate au-
tomated hyperparameter tuning based on a combination of quality
indicators.

5 CONCLUSION
In conclusion, this paper addresses the challenge of clusteringmixed
data containing time series, which is prevalent in various complex
systems. The authors propose a novel pretopological clustering
algorithm that allows for customizable logical clustering and high
parametrization, enabling heathcare experts and other professionals
to better interpret and utilize the results for clustering, diagnosis
and recommendation. PretopoMD performs well on a variety of
quality indicators and demonstrates the potential for hierarchical
clustering in handling complex data. By providing users with the
ability to fine-tune the clustering process using logical rules and
parameters, PretopoMD offers a more interpretable and actionable
clustering result. However, the paper also acknowledges that the
quality of clustering is highly dependent on the user’s objectives
and the context in which the data is used. This emphasizes the
need for a comprehensive understanding of both the dataset and
the clustering method, as well as the importance of developing
improved visualization tools for high-dimensional contexts.

Future work will focus on exploring these solutions while work-
ing on a large and rich dataset comprising healthcare consumption,
weather time series, and mixed building characteristic typologies.
By collaborating with field experts and analyzing the significance
of the clusters, the authors aim to adjust parameters and logical
rules accordingly, ensuring the resulting clusters are meaningful
and useful for specific case studies. Additionally, investigating au-
tomated hyperparameter tuning based on a combination of quality
indicators will be pursued to further improve the clustering process
for mixed data containing time series.
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