

Tourist's Tour **Prediction** by **Sequential** Data Mining Approach

Lilia BEN BACCAR, Sonia DJEBALI, Guillaume GUERARD sonia.djebali@devinci.fr.

smart - - grid.net

Based on geo-located and time-related information of photographs on Instagram, we propose in this paper an original approach to **determine and to predict** behaviors of tourists by analyzing sequences of places visited during a trip by each tourist.

Our approach

Data Processing

Tourist's photos of Paris famous places

Country	USA	UK	Italy	Russia	Brazil	Spain	Australia
Trips	$3\ 064$	1 423	923	742	606	464	330
Average trip duration (days)	≈ 2.64	≈ 2.32	≈ 2.65	≈ 2.91	≈ 2.85	≈ 2.56	≈ 2.77
Average number of photos / trip	≈ 3.76	≈ 3.86	≈ 4.30	≈ 4.87	≈ 4.02	≈ 4.03	≈ 3.70

Sequences

A trip is a succession of days when a non-resident tourist takes at least one photo per day

 $\Delta B \leq \Delta T_i \text{ and } \Delta B \leq \Delta T_j$ and $L_{T_i} = F_{T_j}$

Tourist's Tour Prediction by Sequential Data Mining Approach

Data Processing

Tourist's photos of Paris famous places

Data Analysis

Trips based on the most visited places

Learn the most visited places, no temporal point of view between those places \rightarrow Based on the support of the places

Tours based on the *most visited* places

Learn paths between famous places, build a tour from those rules

- \rightarrow Build an automaton whose links represent rules above a rule's support threshold
- ightarrow Random walk on this automaton

Tours based on the most plausible paths between places

Learn the most plausible paths between famous places, build a tour from those rules

- ightarrow Build a stochastic automaton whose links represent rules and their confidence
- ightarrow Random walk on this stochastic automaton

DE VINCI CONTER

Trip based on the most visited places

Sequential Pattern Mining constraint-based algorithm: PrefixSpan [Pei et alii 2004]

Learning phase

Results : minsup $= 5\%$		
Patterns	Support	
< Tour Eiffel $>$	30.66%	
< Musée du Louvre $>$	25.83%	
< Cathédrale Notre-Dame de Paris $>$	16.16%	
< Avenue des Champs Elysées $>$	14.09%	
< Sacré-Coeur $>$	11.89%	
< Centre Pompidou (CNAC) $>$	8.01%	
< Jardin du Luxembourg $>$	6.63%	
< Galeries Lafayette $>$	6.08%	
< Musée du Louvre, Tour Eiffel $>$	5.39%	
< Montmartre $>$	5.39~%	

Predict phase

A russian tourist want to visit the top 5 places of Paris :

- Tour Eiffel
- Musée du Louvre
- Cathédrale Notre-Dame de Paris
- Champs Elysées
- Sacré-Coeur

Tours based on the most visited places

Sequential Rule Mining Constraint-Based Algorithm: Rules Growth algorithm [Viger et alii 2011]

Results : minsup = 1% and minconf = 15%		
Rules	Support	Confidence
Cathédrale Notre-Dame de Paris \longrightarrow Musée du Louvre	3.59%	22.22%
Musée du Louvre \longrightarrow Tour Eiffel	5.39%	20.86%
Cathédrale Notre-Dame de Paris \longrightarrow Tour Eiffel	3.18%	19.66%
Centre Pompidou (CNAC) \longrightarrow Musée du Louvre	1.52%	18.97%
Tour Eiffel, Musée du Louvre \longrightarrow Cathédrale Notre-Dame de Paris	1.80%	18.57%
Centre Pompidou (CNAC) \longrightarrow Tour Eiffel	1.38%	17.24%
Tour Eiffel \longrightarrow Musée du Louvre	4.97%	16.22%
Tour Eiffel \longrightarrow Cathédrale Notre-Dame de Paris	4.83%	15.77%
Sacré-Coeur \longrightarrow Tour Eiffel	1.80%	15.15%
Tour Eiffel, Cathédrale Notre-Dame de Paris \longrightarrow Musée du Louvre	1.11%	15.09%

Prediction phase (with conviction)

Length	Sequences
1	$\{SC, ET, conv = 0.82\}$
2	$\{SC, ET, ND, conv = 1.01\}; \{SC, ET, CE, conv = 0.99\}; \{SC, ET, L, co$
	1.13}
3	$\{SC, ET, ND, L, conv = 1.21\}; \{SC, ET, CE, ND, conv = 1.09\};$
	$\{SC, ET, CE, L, conv = 1.11\}; \{SC, ET, L, ND, conv = 0.97\}; \{SC, ET, L, CE, CE, CE, CE, CE, CE, CE, CE, CE, CE$
	$conv = 0.99\}$

Learning phase

Tours based on the confidence

+ Sequential Rule Mining Preference-Based Algorithm: TNS algorithm, Top-K non-redundant sequential rules [Viger et alii 2013]

Results : $k = 15$ and minconf = 33%		
Rules	Support	Confidence
Galerie Emmanuel Perrotin \longrightarrow Palais de Tokyo - Musée d'Art	0.41%	100%
Moderne, Louis Vuitton Foundation for Creation		
$Colette \longrightarrow Tour Eiffel$	0.55%	66.66%
Tour Eiffel, Musée du Louvre, Centre Pompidou (CNAC) \longrightarrow	0.69%	41.67%
Cathédrale Notre-Dame de Paris		
Musée du Louvre, Galeries Lafayette \longrightarrow Tour Eiffel	0.55%	36.36%
Ladurée \longrightarrow Avenue des Champs Elysées	0.97%	33.33%
Musée du Louvre, Centre Pompidou (CNAC) \longrightarrow Tour Eiffel	0.97%	33.33%
L'Avenue \longrightarrow Avenue des Champs Elysées	0.41%	33.33%
Trocadéro \longrightarrow Sacré-Coeur, Jardin du Luxembourg	0.41%	33.33%
$L'Avenue \longrightarrow Avenue Montaigne$	0.41%	33.33%
Shangri-La Hotel \longrightarrow Tour Eiffel	0.41%	33.33%

Learning phase

Prediction phase (with conviction)

Examples of tours	Confidence of the tour	Latest conviction
{Musée du Louvre, Pont Neuf,	13%	7.61
Cathédrale Notre-Dame de paris}		
{Saint-Lazare, Galeries Lafayette,	11.1%	4.32
Palais Garnier, Musée du Louvre}		
{Avenue des Champs Elysées, Arc	9.24%	4.73
de Triomphe, Parc Monceau }		

Conclusion

Main idea : based on some specific tourists (for example, Russian, no specific states, mid-aged, no specific sex), the proposed method build three kind of trips

- Most visited places (for "lazy" people)
- Most used routes (for "classic" tourists)
- Specific routes (for "atypical" tourists)

The most probable routes of our methods retrieve the most popular tours (from russian tour operators) and the most popular special/temporary event (among russians).

Future works

Consider a tour as temporal series (Yamata) because Rules respect the order but not the timeline.

Build HMM based on tourists' attributes, i.e. mid-aged Russian from Moscow.

See you again next year ! (maybe at ADMA 2020)

Tourist's Tour Prediction by Sequential Data Mining Approach sonia.djebali@devinci.fr

Tourist's Tour Prediction by Sequential Data Mining Approach

Thank you for your attention

smart - - grid.net

17.19A的。胡尔特和广东部的国际(1941-

RIET-CHARGET.UPSC/DDE.j

AT REALISING A STRING & STRING S. (AT TYPE)

ALL SHOULD BE

和時期的

Lilia BEN BACCAR, Sonia DJEBALI, Guillaume GUERARD sonia.diebali@devinci.fr

21-23 November 2019 i November 2019