
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/287496857

Inscribed ball and enclosing box methods for the convex maximization

problem

Article  in  Optimization Letters · February 2016

DOI: 10.1007/s11590-015-0981-5

CITATION

1
READS

244

2 authors:

Some of the authors of this publication are also working on these related projects:

Context-free Smart Grid Model View project

Guillaume Guérard

Pôle Universitaire Léonard de Vinci

30 PUBLICATIONS   150 CITATIONS   

SEE PROFILE

Ider Tseveendorj

Université de Versailles Saint-Quentin

37 PUBLICATIONS   191 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Guillaume Guérard on 19 October 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/287496857_Inscribed_ball_and_enclosing_box_methods_for_the_convex_maximization_problem?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/287496857_Inscribed_ball_and_enclosing_box_methods_for_the_convex_maximization_problem?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Context-free-Smart-Grid-Model?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guillaume-Guerard?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guillaume-Guerard?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pole-Universitaire-Leonard-de-Vinci?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guillaume-Guerard?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ider-Tseveendorj?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ider-Tseveendorj?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Versailles-Saint-Quentin?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ider-Tseveendorj?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guillaume-Guerard?enrichId=rgreq-0f78ab4b8e4ae5037ac6f84eaf5f7118-XXX&enrichSource=Y292ZXJQYWdlOzI4NzQ5Njg1NztBUzo2ODM1MzA3OTExNzAwNDlAMTUzOTk3Nzg0ODIzNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Optim Lett (2016) 10:417–432
DOI 10.1007/s11590-015-0981-5

ORIGINAL PAPER

Inscribed ball and enclosing box methods for the convex
maximization problem

Guillaume Guérard1 · Ider Tseveendorj1

Received: 1 April 2014 / Accepted: 28 November 2015 / Published online: 19 December 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Many important classes of decision models give rise to the problem of
finding a global maximum of a convex function over a convex set. This problem is
known also as concave minimization, concave programming or convex maximization.
Such problems can have many local maxima, therefore finding the global maximum
is a computationally difficult problem, since standard nonlinear programming proce-
dures fail. In this article, we provide a very simple and practical approach to find the
global solution of quadratic convex maximization problems over a polytope. A con-
vex function achieves its global maximum at extreme points of the feasible domain.
Since an inscribed ball does not contain any extreme points of the domain, we use
the largest inscribed ball for an inner approximation while a minimal enclosing box is
exploited for an outer approximation of the domain. The approach is based on the use
of these approximations along with the standard local search algorithm and cutting
plane techniques.

Keywords Local search algorithm · Non-convex optimization ·
Convex maximization · Inscribed ball

1 Introduction

In certain classes of nonlinear optimization problems, a local solution is a global one.
For example, in minimization problems with a convex (or quasi-convex) objective

B Guillaume Guérard
guillaume.guerard@prism.uvsq.fr

Ider Tseveendorj
Ider.Tseveendorj@prism.uvsq.fr

1 Laboratoire PRiSM, Université de Versailles, 45, avenue des États-Unis,
78035 Versailles Cedex, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-015-0981-5&domain=pdf
http://orcid.org/0000-0002-6773-221X


418 G. Guérard, I. Tseveendorj

function subject to convex constraints, the local minimum is a global solution. For
non-convex functions there may be many local minima so that no local criterion will
give information about the global minimum.

In this article, we consider the concave minimization problem, also called concave
programming or convex maximization:

{
maximize f (x),
subject to x ∈ D

(P)

where f : Rn → R is a convex continuous function and D is a nonempty polyhedral
set inRn defined by

D = {x ∈ Rn | Ax ≤ b} = {x ∈ Rn | 〈ai x〉 ≤ bi , i = 1 → m}.

Assumption 1 It is assumed that D is bounded (a polytope), full dimensional and
there is no redundant constraint.

We recall that a redundant constraint is a constraint that can be omitted from the
system without changing the feasible domain.

Several problems from a variety of domains as technical design, economics, medi-
cine, business andpolitical science canbe formulated as (P). For example, the zero-one
integer programming problem is equivalent to a convex quadratic maximization prob-
lem subject to linear constraints [17].Many sub-problems of nonconvex problems lead
to convex maximization; therefore, it turns out that convex maximization techniques
also play an important role in other fields of global optimization [13].

A necessary optimality condition for a local solution y of (P) is

∂ f (y) ∩ N (D, y) �= ∅. (LNC)

where ∂ f (·), N (·, ·) stand respectively for the sub-differential and the normal cone
defined by

N (D, y) = {y∗ ∈ Rn | 〈y∗, x − y〉 ≤ 0 ∀x ∈ D}.

Several interesting necessary and sufficient global optimality conditions character-
izing a vector z ∈ D satisfying

f (z) ≥ f (x) ∀x ∈ D

have been developed [3,10,20,21].
Assume that z is not a minimum point of a convex function f (·), in other words

∃x : f (x) < f (z) then a necessary and sufficient global optimality condition for
z ∈ D to be a global maximum for (P) [21] is

∂ f (y) ∩ N (D, y) �= ∅ for all y such that f (y) = f (z).
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Inscribed ball and enclosing box methods… 419

We note that for a differentiable f (·), due to ∂ f (y) = {∇ f (y)}, the latter conditions
are equivalent to the following [20]:

∂ f (y) ⊂ N (D, y) for all y such that f (y) = f (z).

For the state-of-the-art in convex maximization including various algorithms and
many applications, we refer to the textbooks [13,14], to the survey [1] and to the article
[12].

It is worth noticing that in spite of being NP-hard, a local search for (P) is relatively
easy [5,19] due to the following method: from a given starting point x0 ∈ D, at each
iteration (k = 0, 1, . . .), xk+1 is a solution to the linear program over D with the
objective function 〈∇ f (xk)x〉. The local search method can be written shortly like

xk+1 = argmax{〈∇ f (xk), x〉 | x ∈ D}. (LS)

Any accumulation point of the sequence {xk} generated by (LS) satisfies the nec-
essary local optimality conditions (LNC).

An important property of convex functions is that every local and global maximum
is attained at an extreme point of the feasible domain [18].

An obvious way to solve the convexmaximization problem over a polytope is there-
fore a complete enumeration of the extreme points. Although most of the algorithms
in the worst case will degenerate to complete inspection of all vertices of the polytope,
this approach is computationally intractable for large problems [16].

We now consider the cutting plane method (CPM) as described in [13]. Let a
local (not global) maximum y ∈ D be a vertex of the full dimensional polytope D.
Let also f (·) be a strictly convex function. Following n edges at y, we find n vectors
y1, y2, . . . , yn , which are the intersections of the edges with level set {x | f (x) =
f (y)}. Then, a hyperplane {x | 〈c, x〉= γ } containing these vectors can be constructed.
In other words, one cuts off a part of D, where values of function f (·) are less or equal
than f (y). The same procedure is then applied to the remaining part of the feasible
domain whenever this part is not empty. Although the concept is theoretically valid, it
suffers in practice from the tailing off effect, i.e. cutting planes become closer or nearly
parallel due to rounding errors so that they generate more and more local maxima. It
remains a challenge in the global search to escape from local maxima.

In the remainder of the article, we consider (P) with objective function f (x) =
‖x‖2, where ‖.‖ stands for the Euclidean norm:

{
maximize ‖x‖2,
subject to x ∈ D

(1)

The aim of this paper is to develop simple and quick methods that are able to find
the global maximumwith pre-defined accuracy. In Sect. 2 first, two main subproblems
and their analytic solutions are defined, when D is a ball and a box respectively. Then,
the section presents the largest inscribed ball and of the enclosing box of the feasible
domain. Section 3 is devoted to necessary conditions and Sect. 4 to algorithms based
on use of both approximation (ball and box). In Sect. 5, we present computational
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420 G. Guérard, I. Tseveendorj

results and some ideas about how to enhance the outer approximation by using an
hyper-rectangle [9] and the inner approximation by using an ellipsoid.

2 Preliminary results

2.1 The optima of two specific cases

In this subsection, we aim to determine optima of two special cases of Problem (1).
The two subproblems are denoted (2) and (3) where the feasible domain is replaced
by a ball, and respectively a box.

Let w ∈ Rn be a center of a ball, r > 0 be its radius, then a closed ball is defined
by:

{x ∈ Rn | ‖x − w‖2 ≤ r2}.

Lemma 1 Consider the following problem:

{
maximize ‖x‖2,
subject to ‖x − w‖2 ≤ r2

(2)

Vector u =
(
1 + r2

‖w‖2
)

w solves Problem (2).

One can easily see that u calculated in this way solves the problem (2) due to KKT
conditions.

Proof The KKT conditions imply that for the optimal solution u there is α ≥ 1 such
that u = αw. Since the global maximum of a convex function should be on the
boundary of the ball, one has the following equation for α

‖x − w‖2 = ‖αw − w‖2 = r2, α ≥ 1

which completes the proof. ��
Let L ,U ∈ Rn be two vectors such that Li < Ui , i = 1 → n. A box is defined

by:

{
x ∈ Rn : Li ≤ xi ≤ Ui , i = 1 → n

}
.

Lemma 2 Consider the following problem:

{
maximize ‖x‖2,
subject to Li ≤ xi ≤ Ui , i = 1 → n.

(3)

The global optimum is vector v such as:

vi =
{
Li , i f |Li | > |Ui |
Ui , i f |Li | ≤ |Ui | , i = 1 → n.
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Inscribed ball and enclosing box methods… 421

Since the problem (3) is separable, one can find its solution componentwise: vi ,
given in Lemma 2, solves the following problem

{
maximize x2i ,
subject to Li ≤ xi ≤ Ui .

2.2 Inner and outer approximations

It is well known that inner and outer approximations of the feasible domain help to get
bounds for the global optimum value. The largest ball inscribed into the polytope gives
an inner approximation for the feasible domain D. Similarly, the minimum volume
enclosing box of the polytope gives an outer approximation for the feasible domain
D.

The optimal values over the inscribed balls S are strictly inferior to the global
optimum value of Problem (1). On the one hand, as it is mentioned earlier, a global
solution of convex maximization is always an extreme point, on the other hand, the
largest inscribed ball of D does not contain any of its extreme points. Regarding
enclosing boxes B, the upper bound can be an extreme point of D. Therefore, the
global optimal value of Problem (1) is bounded as follows:

max f (x) < max f (x) ≤ max f (x)
x ∈ S x ∈ D x ∈ B

where S is the largest inscribed ball and B the enclosing box.

2.2.1 Ball center

Let r(x) be the radius of the largest ball enclosed in D centered at an interior point
x ∈ int (D).

Let also ri (x) be the distance from a vector x ∈ Rn to a hyperplane {t : 〈ai , t〉 = bi }
of the constraint i . Each distance is calculated analytically in the following way:

ri (x) = min
t

{‖x − t‖ : 〈ai , t〉 = bi } = bi − 〈ai , x〉
‖ai‖ .

Therefore, r(x) represents the minimum among these distances:

r(x) = min{ri | i = 1 → m}.

W.l.o.g. it is assumed that ‖ai‖ = 1, ∀i . Otherwise, one can normalize:

bi = bi
‖ai‖ , ai = ai

‖ai‖ , ri (x) = bi − 〈ai , x〉.
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422 G. Guérard, I. Tseveendorj

From now

r(x) = min{bi − 〈ai , x〉 | i = 1 → m}.

The radius for a given x satisfies

r(x) ≤ bi − 〈ai , x〉, i = 1 → m.

We notice that x ∈ D if and only if r(x) ≥ 0.
Theproblemoffinding the largest inscribedball inD canbe solvedbyunconstrained

maximization of the concave function r(x):

{
maximize r(x),
subject to x ∈ Rn .

In fact, the problem can be reformulated into a linear program in Rn+1 also:

{
maximize xn+1,

subject to 〈ai , x〉 + xn+1 ≤ bi : i = 1 → m.
(4)

We denote by S(s, r(s)) the largest inscribed ball where s and r(s) stand for optimal
x and xn+1 of Problem (4) respectively.

Considering different norms, Hendrix et al. [8] focused on calculating the largest
inscribed shapes, not only balls.

2.2.2 Outer box

In order to calculate the outer approximation, two vectors U and V are calculated so
that theirs components are as an upper and a lower bound for each component xi of
x ∈ D.

For the feasible domain considered in this article, finding these vectors costs 2n
linear programming problems, namely for each i = 1 → n:

Ui = argmax{〈ei , x〉 : Ax ≤ b},
Li = argmin{〈ei , x〉 : Ax ≤ b}

where ei = (0, . . . , 1, . . . , 0)� ∈ Rn .

3 Optimality condition checking

An evident way of global optimality condition checking is to compare a local solution
over D with the global solution over its outer approximation.

Proposition 1 Let y be a local solution of Problem (1) and let v be a global solution
over the box B enclosing D. If f (y) = f (v), then y is a global solution of Problem
(1).
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Inscribed ball and enclosing box methods… 423

Proof The inclusion D ⊂ B implies: f (v) ≥ f (x), x ∈ D. When f (v) = f (y), the
inequality f (y) ≥ f (x) ∀x ∈ D holds. Therefore y is a global optimum of (1). ��

For a differentiable convex function f the necessary global optimality condition
can be written like [19,20]

z = argmax(1) ⇒ 〈∇ f (y), x − y〉≤ 0,∀x ∈ D,∀y : f (y) = f (z).

Now we describe another possibility of necessary optimality condition checking
which is helpful for escaping from local optima. A constraint j is inactive for vector
y ∈ D if 〈a j , y〉 < b j . For an inactive constraint j , the following convex problem is
considered:

{
maximize 〈a j , x〉,
subject to f (x) ≤ f (y), x ∈ Dj ,

(P j )

where a j ∈ Rn is the normal vector of j-th constraint and Dj defined by

Dj = {x | 〈ak, x〉≤ bk; for all k �= j}.

Proposition 2 ([7]) Let w j = argmax(P j ). If 〈a j , w j 〉 < b j , and f (w j ) = f (y)
then y is not the global solution to Problem (1).

Proof The full dimensionality fromAssumption 1 implies the regularity, see page 284
in [2]. By first order optimality conditions, there exist

λ ≥ 0, μk ≥ 0, k = 1 → m, k �= j

such that

⎧⎨
⎩
a j − λ f (w j ) − ∑

k �= j μkak = 0
λ( f (w j ) − f (y)) = 0
μk

(〈ak, w j 〉− bk
) = 0.

Again due to Assumption 1, there exists x ∈ D such that 〈a j , x〉= b j . Hence, for
any x ∈ D satisfying 〈a j , x〉= b j , the inequality 〈a j , w j 〉< b j implies

0 < 〈a j , x − w j 〉= λ〈∇ f (w j ), x − w j 〉+
∑
k �= j

μk〈ak, x − w j 〉.

It can be shown that for x ∈ Dj

∑
k �= j

μk〈ak, x − w j 〉≤
∑
k �= j

μk(bk − 〈ak, w j 〉) = 0,
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424 G. Guérard, I. Tseveendorj

and therefore

0 < 〈a j , x − w j 〉≤ λ〈∇ f (w j ), x − w j 〉.

Since f (·) is convex, one has

0 < 〈∇ f (w j ), x − w j 〉≤ f (x) − f (w j ) = f (x) − f (y),

which proves the Proposition ∃x ∈ D : f (x) > f (y). ��
The cutting-plane method is also useful in optimality conditions checking. A

description of the cutting-plane method is presented in Algorithm 1.

Algorithm 1: Cutting-plane method (CPM).

Data: Dk−1, yk

Result: Dk

• Let a local maximum yk be a vertex of the full dimensional polytope Dk−1, the domain after the
(k − 1)-th cutting-plane with D0 = D.

• Following n edges at yk , find n vectors yk1 , yk2 , . . . , ykn , which are the intersections of the
edges with level set {x | f (x) = f (yk )}.

• Let c be the normal of the hyperplane formed by the set of vectors {yk1 , yk2 , . . . , ykn } such as
〈c, yki 〉 > 〈c, yk 〉.

• Dk = Dk−1 ∩ {x ∈ Rn | 〈c, x〉 ≥ 〈c, yki 〉}

Proposition 3 Let 〈c, x〉 = γ be the cutting-plane equation obtained from local
maximum y such that γ > 〈c, y〉. Let x̂ be the solution of the following problem:

{
maximize 〈c, x〉 ,

subject to x ∈ D
(5)

Then y is a global optimum of Problem (P) if
〈
c, x̂

〉
< γ .

Proof Let
〈
c, x̂

〉 = b̂. The new constraint (cutting-plane) is 〈c, x〉 ≥ γ and let L f (α)

be the Lebesgue set of f on α:

L f (α) = {x | f (x) ≤ α}.

If γ < b̂ then there exists x ∈ Rn such that b̂ ≥ 〈c, x〉 ≥ γ . Moreover, ∀x ∈ D,
〈x, c〉 ≤ b̂, so there is x ∈ D such that b̂ ≥ 〈c, x〉 ≥ γ . Thus, the domain is nonempty.

If γ > b̂ then ∀x ∈ Rn , 〈c, x〉 ≤ b̂ ≤ γ . Moreover, ∀x ∈ D, 〈x, c〉 ≤ b̂. Thus,
there is no x ∈ D such that 〈c, x〉 ≥ γ , the domain becomes empty after adding the
cutting-plane. Let us recall a cutting-plane property:

{x ∈ D | 〈c, x〉 ≤ γ } ⊂ L f ( f (y)).
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Inscribed ball and enclosing box methods… 425

Fig. 1 Domain after a cutting-plane

By the definition of the Lebesgue set, it implies that ∀x ∈ D, f (x) ≤ f (y), thus y
is a global maximum over D. ��

Of course, there are some cases where the domain remains non-empty after a
cutting-plane even y is a global maximum, see Fig. 1. We summarize the global opti-
mality condition checking thanks to cutting-plane as follows:

1. If there exists a vector yki ∈ Dk−1, then the domain Dk is non-empty.
2. If each vector yki /∈ Dk−1, i = 1 → n, and Dk is not empty then yk is undefined.
3. If each vector yki /∈ Dk−1, i = 1 → n and Dk is empty then yk is the global

optimum over Dk−1.

4 Algorithms

4.1 Inner approximation

The inner approximation is based on use of the largest inscribed ball.
The main idea is:

– while the radius of the inscribed ball is greater than a threshold value:
– construct the largest inscribed ball in the domain by solving the linear pro-
gramming problem (4);
let w be the ball center;

– solve Problem (2); let u be a solution of Problem (2);
– add an hyperplan tangent at u as a new temporary constraint to Problem (1):

〈w, x〉 ≥ 〈w, u〉 or equivalently 〈w, x〉 ≥ ‖w‖2 + r2 due to lemma 1;
– run local search (LS) from the current vector u;
let y be the local optimum (stationary point);

– construct cutting-plane from y.
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426 G. Guérard, I. Tseveendorj

Algorithm 2: Inner approximation: IA
Data: Ax ≤ b
Result: Global optimum of Problem (1)
Initialization : rmin = ε and condition = f alse;
while condition = f alse do

while r > rmin do
Find r, w the solution of Problem (4);
Find u the global optimum of Problem (2);
Add a temporary constraint to Problem (1): 〈w, x〉 ≥ ‖w‖2 + r2;

end
Remove all temporary constraints;
Find local maximum y by (LS) from the current u;
Construct cutting plane from y by (CPM);
/* Prop. 2 or/and Prop. 3 */

if an optimality condition is satisfied then
condition = true;
Keep in memory the optimum;

else
Add the cutting-plane constraint 〈c, x〉 ≥ 〈

c, yki
〉
to Problem (1);

end
end
Return the global maximum;

4.2 Enhancement with outer approximation

Let v be the maximum of Problem (3) over enclosing box B. If the vector v belongs
to D, then obviously v is a global maximum to (P) too. Assume that v /∈ D.

The main idea of this enhancement is to combine both inner and outer approxima-
tions to find a better starting point for local search (LS).

Let u be the maximum of Problem (2) over inscribed ball S. Since u ∈ D and
v /∈ D, taking a convex combination of u and v one finds an intersection with the
boundary of D, which is a good starting point for a local search.

First, v /∈ D implies that there are indices j such that
〈
a j , v

〉
> b j and we denote

a set of such indices of violated constraints by

J = { j | 〈a j , v〉 > b j }.

The intersection points are calculated directly from the following equation

〈a j , u + α j (v − u)〉 = b j

in α j : 0 ≤ α j ≤ 1 for j ∈ J . Then, the nearest one to u is determined by

α = min{α j | 0 ≤ α j ≤ 1, j ∈ J }.
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Algorithm 3: Inner and outer approximation: IOA
Data: Ax ≤ b
Result: Global optimum of Problem (1)
Initialization : condition = f alse;
while condition = f alse do

Resolve Problem (4);
Find u the global optimum of Problem (2);
Find v the global optimum of Problem (3);
Find the intersection of segment [uv] with boundary of D;
Find local maximum y by (LS) from the intersection point;
Construct cutting plane from y by (CPM);
/* Prop. 1 or/and Prop. 2 or/and Prop. 3 */

if an optimality condition is satisfied then
condition = true;
Keep in memory the optimum;

else
Add the cutting-plane constraint 〈c, x〉 ≥ 〈

c, yki
〉
to Problem (1);

end
end
Return the global maximum;

5 Computational experiments and future works

5.1 Computational experiments

The IA and IOA algorithms have been run on a selection of test instances of convex
maximization problems taken from “A collection of test problems for constrained
global optimization algorithms” (noted by TP# the chapter of the instance) [6] and
“An algorithm for maximizing a convex function over a simple set” (noted by P# the
number of the instance) [4].

The algorithms are implemented on Scilab (http://www.scilab.org/), linear pro-
grams are solved using Linpro solver (from add-on Quapro). The tests are performed
on a computer with a IntelCore2 Duo processor, 3.16GHz CPU and 4GB of RAM.

The numerical results are presented in the table below and the meanings for all
columns in the table are as follows:

• n stands for number of variables;
• iIA stands for number of local searches for IA to solve Problem (1);
• iIOA stands for number of local searches for IOA to solve Problem (1);
• bkv stands for the best known value;
• the global optimal value obtained by the algorithms developed in this paper;
• tIA stands for the average computing time for IA in seconds (with rmin = 0.01);
• tIOA stands for the average computing time for IOA in seconds.

Figure 2 illustrates a sequence of the inscribed balls obtained by the IA algorithm,
which show visually the convergence to the global solution for test problem P4. Our
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Fig. 2 One iteration of IA algorithm

Fig. 3 One iteration of IOA algorithm

local search method requires an initial starting point, and one can see in Fig. 3, the
calculation of the starting point for the IAO algorithm.

We should warn the reader that although both algorithms found the global optimal
solutions for all test problems (see Table 1) within short computing time (less than 1
s for n ≤ 10, less than 2s for n ≤ 50 and 35 s. for n = 200). Computing times are
not relevant, and do not challenge well-known algorithms, our main aim is quality of
solutions obtained at each iteration, and to reach an optimal value in few iterations.
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Table 1 Computational results for benchmarks from [4,6]

Problem n iIA iIOA bkv Optimal value tIA tIOA

TP2.1 5 3 3 −17.0000 −17.0000 0.1 0.2

TP2.6 10 2 4 −39.0000 −39.0000 0.3 0.7

TP2.7.1 20 3 2 −394.7506 −394.7506 1.5 1.0

TP2.7.3 20 3 2 −8695.01193 −8695.01193 1.5 1.0

P4 2 1 1 42.0976 42.0976 0.1 0.1

P6 2 2 1 162.0000 162.0000 0.1 0.1

P11 100 2 1 1541089. 1541089. 6.0 2.5

P11 200 2 1 4150.4101 4150.4101 35.0 14.7

Table 2 Approximation results
for benchmarks from [4,6]

Problem fIA fIOA bIA bIOA

TP2.1 0.68 1.42 0.92 1.42

TP2.6 0.60 1.08 0.81 1

TP2.7.1 0.35 >10 0.95 1.54

TP2.7.3 0.74 1.82 0.93 1.31

P4 0.86 1.38 0.86 1.38

P6 0.55 1 0.81 1

P11 0.82 1 0.83 1

P11 0.83 1 0.86 1

We now turn our attention to Table 2 that illustrates the ratio of the best known
value to the optimal values of the objective function over the approximations (box and
ball) for the IA and the IOA algorithms.

The meanings for columns in the table are as follows, where z is a global optimum
of Problem (1), u is the global optimum of a ball and v is the global optimum of a box:

• fIA stands for the best value of f (u)
f (z) during the first iteration of IA algorithm;

• fIOA stands for the best value of f (v)
f (z) during the first iteration of IOA algorithm;

• bIA stands for the best value of f (u)
f (z) ;

• fIOA stands for the best value of f (v)
f (z) ;

On average, for a larger benchmark of test problems, a ball optimum and a box
optimum are between 70–140% of the best known value for the first iteration and
between 90–115% for the last iteration. The disparity between both approximations
comes from the radius threshold for inscribed balls and the shape of the feasible
domain D.

Computing results reinforce the idea of seeking the global optimum from approxi-
mations of the feasible domain. However, as balls and boxes may not fit well into the
feasible domain, the following subsections present some better approximations for a
random polyhedron.
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5.2 From box to hyper-rectangle

The outer approximation by a box could be non representative to the feasible domain.
Indeed, the box is constructed by considering the lower and upper bound in each
dimension, and it does not take into account the shape of the feasible domain. In order
to approximate the feasible domain in a better way, one could try to find an enclosing
minimum volume hyper-rectangle. Let a matrix K be defined as follows:

K = (d1, . . . , dn) wi th 〈di , d j 〉 = 0, i �= j and det (K) �= 0.

So, a problem of the smallest hyper-rectangle enclosing the polytope D is defined
as follows:

⎧⎪⎨
⎪⎩
minimize

di

∏n
i=1

〈
di ,Ui − Li

〉
,

subject to Ui = argmax
{〈
di , x

〉 : Ax ≤ b
}
,

Li = argmin
{〈
di , x

〉 : Ax ≤ b
}
, i = 1 → n.

There is infinite number of orthogonal bases and finding the best one is not an easy
task. This problem is of the same degree of difficulty as (1). Therefore, the problem is
takenwith another point of view.The goal is to construct a hyper-rectangle according to
the shape of the feasible domain. In order to calculate K, the Gram–Schmidt method
[11] is applied, see Algorithm 4 and Fig. 4. First, we choose u1 = v1 = d1. At
the very beginning, d1 is chosen from the active edges at the local optimum y and
v2, . . . , vn = e2, . . . , en . Then, K is formed by the rotation of the global basis which

transform e1 into
d1

‖d1‖ . We notice that the approximation’s quality depends on choice

of the starting edge.Moreover, this process doesn’t guarantee theminimality of volume
for the hyper-rectangle.

Algorithm 4: Gram–Schmidt method.
Let proju(v) be the projection operator of v on u by

proju(v) = 〈u, v〉
〈u, u〉 u.

Let v1, . . . , vn be n vectors, we define the recurrence: u1 = v1, u2 = v2 − proju1 (v
2) and

uk = vk − �k−1
i=1 proju j (v

k ).

The basis formed by the set of vectors {v1, . . . , vn} is orthonormal.

Lemma 3 The global optimum z over the hyper-rectangle can be calculated by:

zi =
{ |〈di , Li 〉|, i f |〈di , Li 〉| > |〈di ,Ui 〉|

|〈di ,Ui 〉|, i f |〈di , Li 〉| ≤ |〈di ,Ui 〉| i = 1 → n.
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Fig. 4 Gram–Schmidt process
where v1 is colinear to e1

Proof The proof is similar to the case of the box. ��

5.3 From ball to ellipsoid

Naturally, further improvement of the approach can be done by using the largest
inscribed ellipsoid instead of the ball since the former approximates the feasible
domain better than the latter.

Finding the largest inscribed ellipsoid is a convex optimization problem [15], while
the largest inscribed ball problem is solved by a linear programming [8].

6 Concluding remarks

In this article, we have developed algorithms for finding the global solution for
quadratic convex maximization problem. The global optimal solutions are found for
all test problems considered in few local searches.

Making a better choice of d1 in Sect. 5.2 is a challenging issue and using the
inscribed ellipsoid could improve the inner approximation. We keep these interesting
topics for our near future researches.
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