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Abstract Many important classes of decision models give rise to the problem of finding a global minimum of
a concave function over a convex set. Since such a function may have many local minima, finding
the global minimum is a computationally difficult problem, where standard nonlinear programming
procedures fail. The two proposed methods are simple and quick, using the largest inscribed ball
and the minimal enclosing box as approximation for cutting-plane method.
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1. Introduction

In certain classes of nonlinear problems the local solution is always the global one. For exam-
ple, in minimization problems with a convex (or quasi-convex) objective function subject to
convex constraints the local minimum is the global solution. For non-convex functions there
may be many local minima so that no local criteria will give information about the global
minimum.

In this article, we consider the non-convex optimization problem, also known as concave
minimization, concave programming or convex maximization:

{
maximize f(x),
subject to x ∈ D (1)

where f : Rn → R is a convex continuous function and D is a nonempty, convex compact in
Rn, a polytope defined by

D = {x ∈ Rn | Ax ≤ b} = {x ∈ Rn | 〈ai, x〉 ≤ bi, i = 1, . . . ,m}.
For the state-of-the-art in convex maximization including various algorithms and abundant
applications, we refer to the textbooks [9, 10] and to survey [1].

An important property of convex functions is that every local and global maximum is
achieved at some extreme point of the feasible domain [13]. Several interesting necessary
and sufficient global optimality conditions characterizing a point z ∈ D satisfying f(z) ≥
f(x), ∀x ∈ D have been proposed [2, 6, 7, 15, 16].

An obvious way to solve the concave programming problem is a complete enumeration
of the extreme points. Although most of the algorithms in the worst case will degenerate to
complete inspection of all vertices of the polytope, this approach is computationally infeasible
for large problems [12].

In this article, algorithms are specialized for solving the following problem, maximization
of distance to the origin, a quadratic problem:

{
maximize ‖x‖2,
subject to x ∈ D (2)
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where D is a full dimensional polytope.

2. Optimization methods

Firstly, let us concentrate on the local search and the cutting plane method. A local search with
starting point x for (1) is relatively easy due to the method [4, 14]:

xk+1 = argmax{〈∇f(xk), x〉 | x ∈ D}.

When xk+1 = xk, then xk is a local maximum of D.
Let a local maximum y ∈ D be a vertex of the full dimensional polytope D. Following n

edges at y, we find n points y1, y2, ..., yn, which are the intersections of the edges with level set
{x | f(x) = f(y)}. Then, hyper-plane {x | 〈c, x〉 = γ} that contain the points are built [9].

By the convexity of the objective function f(·) problem (2) is equivalent to:
{

maximize ‖x‖2,
subject to x ∈ D, 〈c, x〉 ≥ γ

In other words, one cuts off a part of D, where values of function f(·) are less or equal than
f(y). The same procedure is then applied to the remaining part of the feasible set whenever
this part is not empty.

However, despite such nice theoretical idea, this approach suffers, in practice, from the
tailing off effect, i.e. cutting planes become closer or nearly parallel due to rounding errors
so that they generate more and more local maxima. It remains the challenge in global search
step: how to escape from a local maximum area?

Proposed methods are based on two sub-problems. The first one is the maximum value of
(2) where D is a ball, noted. The second one is the maximum value of (2) where D is a box.

Lemma 1. {
maximize ‖x‖2,
subject to ‖x− w‖2 ≤ r2 (3)

The optimal solution is u =
(
1 + r

‖w‖

)
w.

The largest ball inscribed into the polytope D is based on Murty et al. research works
[11]. The radius of an inner ball is the minimal distance from its center x to the constraints
of the feasibility domain. The center of the largest ball inscribed into D is the solution of the
maximum value of the minimum radius of a point x ∈ D, with ‖ai‖ = 1:

{
maximize xn+1,
subject to

〈
ai, x

〉
+ xn+1 ≤ bi, i = 1, . . . , n

(4)

The second sub-problem is the maximum value of (2) where D is a box.

Lemma 2. {
maximize ‖x‖2,
subject to Li ≤ xi ≤ Ui, i = 1, . . . , n

(5)

The global optimum is v =
(
max{| Li |, | Ui |}

)
, i = 1, . . . , n.

In order to calculate the outer approximation, let U and L be the upper and lower bounds
for each dimension for D. The domain is convex, so for all i = 1, . . . , n :

Ui = argmax
{〈
ei, x

〉
: Ax ≤ b

}
, Li = argmin

{〈
ei, x

〉
: Ax ≤ b

}
, ei = (0, . . . , 1, . . . , 0)T

Both methods have the same process. One method uses an inner approximation (IA) with
the largest inscribed ball. The second one is based on an inner and outer approximation (IOA)
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using largest inscribed ball and minimal enclosed box. We expose the main step of the two
methods:

1. Find a candidate: IA resolves (4) then (3). IOA resolves (4) then (3), and (5).

2. Find a local maximum from the candidate.

3. Use cutting-plane until the domain is empty.

4. Return global maximum.

Figure 1: One iteration of IA and IOA algorithm.

3. Results and discussions

The IA and IAO algorithms have been tested on a bunch of convex maximization problems
taken from "A collection of test problems for constrained global optimization algorithms" [5]
(noted: TP plus the chapter of the test) and "An algorithm for maximizing a convex function
over a simple set" [3] (noted: P plus the number of the test).

We present the numerical results in the table below and the meanings for all columns in the
table follow: number of variables; number of local searches for IA; number of local searches
for IOA; the best value found; the global optimal known value; the average computing time
for IA in seconds; the average computing time for IOA in seconds.

Problem n IA LS IOA LS the best value optimal value time IA time IOA
TP2.1 5 3 3 -17 -17 0.1 0.2
TP2.6 10 2 4 -39 -39 0.3 0.7

TP2.7.1 20 3 2 -394.7506 -394.7506 1.5 1.0
TP2.7.3 20 3 2 -8695.01193 -8695.01193 1.5 1.0

P4 2 1 1 42.0976 42.0976 0.1 0.1
P6 2 2 1 162 162 0.1 0.1

P11 100 2 1 1541089 1541089 6 2.5
P11 200 2 1 4150.41013 4150.41013 35 14.7

The best known solutions are found for all test problems considered in few local searches.
Average computing time is calculated in the case of all conditions are checked at each iteration
(full dimensional, active constraints, normal cone, etc.).
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4. Conclusion

In this article, in order to find the global solution of a quadratic convex maximization problem,
two algorithms are described. They are based on using the largest inscribed ball and the
minimal enclosing box as an approximation for cutting-plane method. These methods are
simple, quick and provide the global optimum.

Currently, we use box built on the orthonormal basis. In future work, a box with an other
orthonormal set will be used (also named cuboid) thanks to Gram-Schmidt algorithm [8] in
order to build the minimal box enclosing the domain D.
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