
Survey on Javascript Engines Fuzzers

Lucas Bichet1, Guillaume Guerard1, and Soufian Ben Amor2

1 Léonard de Vinci Pôle Universitaire, 92916 Paris La Défense, France
2 LI-PARAD Laboratory EA 7432, Versailles University, 78035 Versailles, France

guillaume.guerard@devinci.fr

Abstract. The security of Web users is becoming a major issue today.
Thus, Web browsers and more particularly the JavaScript engines that
compose them are studied carefully to detect and promptly correct the
vulnerabilities that they embed. This article presents the current state
of research on vulnerabilities affecting JavaScript engines, starting from
the current research context to the research tools used.

Keywords: Fuzzing · JavaScript Engine · Code Coverage.

1 Introduction

Since the end of the 1990s, the Internet has been spreading throughout the
world at tremendous speed. It is the advent of the mass access, all the homes are
then progressively equipped with an Internet connection. Software facilitating
the navigation on the Web appears: the web browsers. Although these were very
specialized at the beginning, they swiftly became extremely complex software,
compatible with many protocols, specifications and interpreted languages.

These software are nowadays extremely used by both personal computers
and phones, which makes them critical from the point of view of the security
of users on the Internet. In particular, the JavaScript engines embedded in all
web browsers nowadays are regularly subject to vulnerabilities discovered by
researchers or exploited in the wild.

The notion of vulnerability (in the IT sense of the term) is well-known by
the users. However, it is not as evident as it seems at first glance, and it is not
always easy to explain what constitutes a vulnerability or not. A vulnerability
can be described as an expected or unexpected feature that introduces a risk to
the user’s security, or to the target’s continuity of operation.

Vulnerabilities have in common the fact that they have an impact on the
security of users by definition. The method used to exploit the vulnerability and
produce something interesting and concrete from the attacker’s point of view is
called ”exploit” or ”exploit code”.

We will present the basics of the functioning of JavaScript engines to under-
line the research axes in term of security, then we will come back in more detail
on the methods and tools accompanying the research of vulnerabilities on this
subject.



2 L. Bichet et al.

Among the many software testing techniques available today, fuzzing has
remained highly popular due to its conceptual simplicity, its low barrier to de-
ployment and its vast amount of empirical evidence in discovering real-world
software vulnerabilities [24]. Fuzzing refers to a process of repeatedly execut-
ing a program with generated inputs that may be syntactically or semantically
malformed.

This paper focuses on the vulnerabilities through the JavaScript engine, how
to detect the vulnerabilities. Following the literature review, we propose various
axes of research to improve the vulnerabilities finding through fuzzer’s enhance-
ment.

The paper is built as follows: the section 2 exposes the notion of vulnera-
bilities and their consequences for a user. The section 3 presents the JavaScript
language and engine. The section 4 shows the current research about how to
discover vulnerabilities. The section 5 presents research axes to improve the re-
searches. The section 6 concludes this paper.

2 Vulnerabilities

It is meaningful to distinguish bugs and vulnerabilities: a bug represents a pro-
gramming error in computer code that makes it works in an unexpected way.
Bugs can sometimes (but not necessarily) introduce vulnerabilities, while vul-
nerabilities can sometimes be the result of bugs but not necessarily either.

For example, a bug allowing a buffer stack overflow (writing outside the limits
of a previously allocated buffer) probably introduces a vulnerability, while a bug
causing an inability to read a file presumably does not.

In fact, the notion of vulnerability is subjective: it strongly depends on the
context of the target as well as on the context of the target’s users. For example,
in the context of industrial activity monitoring software, the ability to remotely
interrupt the software bears devastating consequences and therefore introduces
an obvious security risk.

It is therefore legitimate to consider such an ability as a vulnerability. In the
context of a Web browser, the ability to interrupt the software remains an annoy-
ing bug, but the security risks involved are limited: the notion of vulnerability
is therefore probably unappropriate here.

2.1 Types of vulnerabilities

Since the notion of a vulnerability has been clarified through examples, we note
typical characteristics that allow us to classify them by type such as:

1. Vulnerabilities known as injections [18, 34]: these are vulnerabilities induced
by a misuse of inputs provided by a user. Typically, many Web vulnerabilities
are injections that frequently come from the use of untrusted information
provided by a user in an inappropriate context: SQL injections, JavaScript
or XSS injections, etc.



Survey on Javascript Engines Fuzzers 3

2. Memory corruption vulnerabilities [5, 33]: these are low-level vulnerabilities
occurring at the process memory management level. These vulnerabilities
allow the arbitrary modification of the process memory by the attacker. For
example, heap overflows are the best-known memory corruption, but many
other vulnerabilities exist (use-after-free, type confusion or stack overflow
[19]). These are the most common vulnerabilities found in JavaScript engines.

3. Logical vulnerabilities: these are vulnerabilities caused by a logical problem
in the design of the application. These are habitually vulnerabilities on a
larger scale (the entire information system). For example, an identification
made through supposedly private data at one end of the information system,
while this information can be gleaned publicly (and intentionally) elsewhere
in the system.

4. Hardware vulnerabilities: these are vulnerabilities introduced by the hard-
ware supporting a system or an application. This can be related to the
design of the processor (Spectre, Meltdown vulnerabilities for example [30]),
to the presence of an accessible console port offering elevated privileges on
connected objects, etc.

5. Other types: vulnerabilities related to network protocols, access rights, etc.

2.2 Consequences of vulnerabilities

Vulnerabilities have in common the fact that they have an impact on the security
of users by definition. The method used to exploit the vulnerability and produce
something interesting and concrete from the attacker’s point of view is called
exploit or exploit code. In that manner, many ways to impact security can be
grouped by:

1. Arbitrary code execution: the attacker obtains the ability to execute the
code he requires on the targeted machine through the vulnerable applica-
tion. Arbitrary code execution is one of the goals of an attacker targeting a
JavaScript engine.

2. Exfiltration of private data: the attacker obtains the ability to gather data
that he should not obtain access to (Cookies, passwords). The exfiltration
of private data (like Cookies) can also be part of the goals sought by an
attacker targeting a JavaScript engine.

3. Elevation of privileges: the attacker obtains the ability to perform privileged
actions that he was unallowed to perform.

4. Denial of service: the attacker obtains the ability to alter the operation of
the targeted vulnerable service. He can therefore interrupt it, slow it down,
etc.

3 JavaScript

Let’s focus on the JavaScript language and engine. JavaScript is an extremely
widespread non-typed scripting language, initially used to make web pages dy-
namic. It has a significant need for performance, and this need tends web appli-
cations to rely on this language.



4 L. Bichet et al.

Because of its simple syntax, its asynchronous code mechanisms and its per-
formance, JavaScript is equally spreading outside the Web and inviting itself in
many Desktop applications via Node.js (derived from JavaScript) and Electron.js
(a technology allowing porting a Web application in JavaScript in a Desktop ap-
plication).

3.1 Javascript engines

A JavaScript engine is a software that interprets JavaScript code and allows its
execution. JavaScript engines are part of the essential components of browsers
with the rendering engines, the user interface, etc. There are several of them,
used by different browsers:

1. JavaScriptCore3 is used in Safari and developed by Apple. The JavaScript
engine of Safari was also formerly called Nitro and SquirrelFish.

2. V8 is used in Google Chrome, Chromium (which itself represents the basis
for many browsers such as Microsoft Edge, recent versions of Opera, Brave,
Google Chrome) and Node.js in particular. It is developed by Google. Ross
McIlroy, a well-known Google researcher, perfectly describes the V8 in the
dedicated blog4.

3. Chakra5 is used in Internet Explorer 9 and developed by Microsoft.
4. SpiderMonkey6 is used in Firefox and is developed by Mozilla.

The vast majority of JavaScript engines work in the same way and differ
merely in their implementation (see Figure 1). These software are developed in
C++ for the most part and are composed of two essential parts, the interpreter
and the optimizer, and specific data structures (commonly called hidden classes,
maps, shapes, etc.). Vulnerabilities can therefore be present at various levels of
the JavaScript engine.

The information above is not intended to explain the functioning of a JavaScript
engine but simply to highlight its key components, necessary for a proper un-
derstanding of the subject.

Javascript interpreter The JavaScript interpreter converts the JavaScript
source code into an abstract syntax tree (AST) and generating the associated
bytecode. This bytecode is then executed in a JavaScript virtual machine tran-
scribing it on-the-fly into native machine code as shown in the Figure 2.

The interpreter is in charge of collecting information about the execution
of the program such as the number of times a function is called, what type of
arguments are passed to a function, etc. These data are stored in caches used
by the JIT compiler during the optimization of the code.

3 https://trac.webkit.org/wiki/JavaScriptCore
4 https://v8.dev/
5 https://github.com/chakra-core/ChakraCore
6 https://www.mozilla.org/fr/js/spidermonkey/



Survey on Javascript Engines Fuzzers 5

Fig. 1. General organization of a Javascript engine.

Javascript Optimizer & JIT Compiler The purpose of the JavaScript opti-
mizer is to remove redundant parts of the code, and to translate the JavaScript
bytecode of the functions very often executed into native machine code, which
can be executed directly by the processor as presented in the Figure 3.

It is based on a compiler Just-in-time (JIT) or on-the-fly compiler that breaks
down the optimization into several passes, which are specific to each JavaScript
engine [35]. The information collected by the interpreter makes it possible to
establish whether a function needs to be optimized or not: in the positive case,
the JIT compiler converts the function into the form of a graph (as sea of nodes
for V8 [29]) and proceed to the simplification of the graph of the function in
several phases. For example, if it was noted that function A only received objects
of a class B as arguments, function A will be specifically optimized for objects
of class B. However, it is necessary to check that the arguments received by
function A are always of type B to be able to deoptimize the function when its
input arguments change and switch back to the non-specialized version of the
function executed by the interpreter [31].

Data structures The principal difficulty of these engines is to succeed in rec-
ognizing the type of the data used, since JavaScript is untyped. For this, a data



6 L. Bichet et al.

Fig. 2. Generation of Javascript bytecode from source code.

structure is associated with the set of data used and contains all the information
on the type of the data in question: its properties, its size, its accessors, etc. This
data structure is found in all engines under different names: Maps in v8, Shapes
in JavascriptCore, HiddenClasses more generally.

Many other optimizations are embedded in the code of some JavaScript en-
gines, such as compression and pointer tagging for example.

3.2 Types of vulnerability

The most represented vulnerabilities found in Web browsers are memory cor-
ruptions like heap overflow [33] and integer overflow [15]. Some vulnerabilities
are relatively specific to JavaScript based software, given their particular mode
of operation. The confusion vulnerabilities [2] represent a very good example,
since they only happen when a software is mistaken about the type of the data it
manipulates, a situation that is not very frequent in usual codes but that happen
in JavaScript engines given their specific framework.

The interpreter and the JIT mentioned above as well as their numerous sub-
parts are likely to contain vulnerabilities. However, it appears that most of the
vulnerabilities come from the JIT compiler, which is a much more complex piece
of software than the interpreter. To be specific, type confusion frequently occurs
as a result of errors in the optimization or deoptimization of executed functions.

However, the exploitation of JavaScript engine’s vulnerabilities and related
techniques will be uncovered in this document, as it is a separate and complex



Survey on Javascript Engines Fuzzers 7

Fig. 3. Optimization of Javascript code (here with v8) ©JJY-security.

topic. There are known methods [13, 14, 32] allowing to convert a bug into an
arbitrary code execution, most of them work as follows:

1. Triggering the vulnerability and manipulating the memory to corrupt a
JavaScript object.

2. Obtaining primitives addrof and fakeobj allowing respectively to obtain the
address in memory of a given JavaScript object and to construct an arbitrary
fake JavaScript object in memory.

3. Obtaining arbitrary read and write primitives via the creation of a fake
JavaScript array where its data pointer is modified thanks to the preceding
primitives.

4. Execution of arbitrary code by the preceding primitives using various tech-
niques to obtain RWX pages in memory (function compiled by the JIT or
WebAssembly function).

JavaScript is a widespread language. Its specification is constantly evolving
and JavaScript engines are constantly being equipped with recent and experi-
mental features that are interesting areas of vulnerability research. One example
is WebAssembly (WASM), which is a pseudo assembly language that offers an
intermediate representation between JavaScript code and machine code while
remaining independent of the underlying hardware. This feature is examined
from a security point of view because it brings many new features to the code
base and thus new horizons in terms of vulnerability research [16].

3.3 Vulnerability scanning techniques

There are essentially two principal ways to seek for vulnerabilities in web browsers
and more generally in software.



8 L. Bichet et al.

Fig. 4. Example of an HiddenClass containing information related to the type of the
manipulated data.

Firstly, the manual code review consists in methodically reading the source
code or the native code if the project is not open-source and trying to perceive
errors. This technique is effective, but it is extremely time-consuming and te-
dious. However, it additionally allows for identifying undetectable details with
the second technique, because a trained human eye will be skilled to assume the
places where mistakes could have been made.

Secondly, the fuzzing consists of automatically generating inputs and sub-
mitting them to the target software. It is enough to monitor how the software
behaves (crash, slowness, unusual behavior) to isolate inputs that probably lead
to vulnerabilities. This technique is often very efficient but less accurate. It is
equally necessary to configure a tool or even to develop one when striking a very
specific target. The inputs are chosen or altered thanks to various techniques
like genetic algorithms.



Survey on Javascript Engines Fuzzers 9

Fuzzing was introduced by Miller et al. [26] for evaluating the robustness of
UNIX utilities against unexpected inputs. The difference between fuzzing and
other black-box test generation methods is that fuzzing relies on very weak
oracles-checking only for crashes or hangs, which lets it explore the input space
automatically.

The optimization of the functioning of a fuzzer is a very vast domain: we can
try improving the mutation algorithms generating the inputs, find new metrics
to evaluate the impact of the tested input, improve the speed of the fuzzer, etc.
We will therefore present in the following section the techniques and tools of
fuzzing mostly used for the study of JavaScript engines.

4 Fuzzing of JavaScript engines

There are many well-known fuzzers whose efficiency has been proven. Some are
intended to be non-specialized such as AFL++ [9], which is also very modular
and therefore very reused. But in some cases, the target program taken as in-
put data is structurally complex that a general fuzzer becomes insufficient and
therefore useless. Indeed, when the generation of a valid input for the program
is non-trivial, it becomes necessary to develop specially adapted fuzzing tools.

In the case of the study of a JavaScript engine, the generation of valid
JavaScript code is essential if one wants to be able to fuzz in-depth the pro-
gram, and in particular its JIT compiler. Indeed, if the JavaScript codes passed
in the input are invalid, they will not even pass the stage of parsing and inter-
pretation. Thus, it will never be executed and even less optimized by the JIT
compiler. We will therefore only refer to the submerged part of the iceberg that
is the parser integrated into the JavaScript engine.

We observe that all the solutions of fuzzing employed today to answer these
constraints are more or less based on the use of the JavaScript grammar for the
generation of code and the use of the code coverage as a metric to guide the
fuzzing through mutation of the generated code or grammar [6, 24]. Although all
JavaScript engine fuzzers are based in some way on grammar, their usage can
vary depending on the situation.

Two classes of fuzzers have been developed, generative andmutational fuzzers.
Generative approaches build a new test case from the ground following pre-
defined rules like a context-free grammar of the JavaScript programming lan-
guage or reassembling synthesizable code bricks dissected from the input corpus;
mutational approaches synthesize a test case from existing seed inputs and adapt
them for upcoming tests.

4.1 Fuzzing & feedback

In addition to the result of execution, it is conventional for fuzzers to utilize
methods to obtain additional feedback after each execution to better guide the
fuzzing.

We can separate fuzzers into several distinct categories based on the type of
feedback they use:



10 L. Bichet et al.

1. The white box fuzzers recover during the execution the exact conditions to
which the input is subjected. They modify the input in a suitable way to
pass new conditions in the subsequent executions. The white box fuzzing is
based on binary instrumentation techniques such as symbolic execution [11].

2. The grey box fuzzers only retrieve some information such as the code cov-
erage: for each entry, they retrieve the code paths in the AST reached by
this execution to be able to guide the next executions and encourage the
exploration of new paths [37].

3. The black box fuzzers do not use any additional feedback. They use the target
program as a black box and do not analyze how inputs to the program are
processed. As a result, they are frequently faster than the first two but less
efficient.

The vast majority of current fuzzers are grey-box fuzzers using code coverage as
the primary metric. JavaScript fuzzers are no exception to this trend, and use
code coverage as a clue to the interest of an entry for fuzzing.

4.2 News on Javascript’s Fuzzers

We have chosen to focus on several fuzzers from different Javascript engines,
in order to list and compare the notable features they deploy. These fuzzers
have been chosen because they have produced good results, are recent and each
introduces different novelties. There are many other interesting fuzzers [1, 7, 28,
36, 37], some of them will illustrate the next section about axes of research.

CodeAlchemist Presented in 2019, CodeAlchemist [17] exploits the notion of
semantic validity in the generation of JavaScript code. Indeed, by relying on
grammar or by applying mutations to pre-selected codes (called seeds), they
guarantee the produced code will be syntactically valid i.e. it will be considered
as valid code, but nothing guarantees its validity in a precise context. The se-
quence of lines of code may not produce any sense, and this is precisely what
CodeAlchemist intends to prevent. It extracts code bricks from the seeds pro-
vided as input, and associates constraints to them as rules to follow when con-
necting blocks together. The fuzzer is thus separated into three parts: the seeds
parser, the constraints analyzer, and the fuzzer itself.

Deity Introduced in 2019, Deity [23] employs the notion of fuzzing guided by
abstract syntax tree mutation (AST). In fact, Deity manages a abundant number
of seeds for its mutation algorithm. These seeds come from JavaScript code
recovered on the Internet but also from newly discovered vulnerabilities since we
can observe they are often triggered by the same exploits. The idea is to convert
these JavaScript codes into AST as an interpreter would do and to operate
mutations directly on this AST: deletion of nodes, merging of several paths
coming from various codes. Once the mutation has been applied, the algorithm
redoes the reverse conversion to recover valid and mutated JavaScript source
codes, which are submitted to the targeted engine.



Survey on Javascript Engines Fuzzers 11

EvoGFuzz Presented in 2019, EvoGFuzz [8] has the particularity to apply
mutations not on codes generated by a grammar, but directly on the grammar
itself. It requires seeds and a file describing the JavaScript grammar. At the start,
it will generate probabilistic grammar by isolating the most used grammar rules
in the seeds. Then, a population of codes to submit to the JavaScript engine is
generated, and a genetic algorithm is used to select the most interesting entries.
The structure of these entries will then influence the defined grammar, and thus
the next generation of entries.

FuzzILi Presented in 2018, FuzzILi [12] is a fuzzer also employing a mutative
approach. It has the particularity to use an intermediate representation language
specially created for the occasion: FuzzIL. This language takes the form of a both
easily mutable and easily convertible bytecode into JavaScript code. Then, they
exert several kinds of mutations to it: input mutator changes the variables used
by the instructions, combine mutator combines two already existing intermediate
representation languages. To conclude, the code coverage provides information
about the interest of the newly created mutation.

Montage Presented in 2020, Montage [21] starts with two interesting observa-
tions:

– Vulnerabilities often come from files previously patched against other vul-
nerabilities

– Code fragments that trigger vulnerabilities frequently reuse code snippets
from existing test code.

Based on these observations, Montage uses a Neural Network Language Model
(NNLM) to learn the links between the code fragments found in the test sets.
The fuzzing is done in three phases:

– Firstly, it consists of extracting code fragments from the existing test sets.
– Then, the model trains the NNLM on the basis of the extracted fragments.
– Finally, the model generates newly potentially vulnerable codes thanks to

the NNLM previously trained.

5 Research axes

Fuzzing is the most popular approach for discovering vulnerabilities in JavaScript
engines. Many fuzzers exist and have already been proven, but most of the time
they are only made public when they have already been overexploited on known
open-source JavaScript engines. It is therefore possible to draw inspiration from
them, to reuse them on other open-source engines, but the exploration of creative
ideas and tracks remains essential to discover more vulnerabilities. We identify
five potential axes of improvement.



12 L. Bichet et al.

5.1 Hybrid methods

Hybridization consists in designing a new tool by combining several projects and
in particular the novelties introduced by the different fuzzers presented. The idea
is to benefit from the advances of fuzzers, to complete others, and thus obtain
better efficiency in the fuzzing.

Outside JavaScript fuzzing, Yun et Al. propose QSYM [39], a hybrid fuzzer
for real-world programs’ binaries, which uses Dynamic Binary Translation (DBT)
to natively execute the input binary as well as to select basic blocks for symbolic
execution. The DBT produces basic blocks for native execution and prunes them
for symbolic execution, allowing to switch between two execution models. Then,
QSYM selectively emulates only the instructions necessary to generate symbolic
constraints. The fuzzer is used on the LAVA-M dataset and outperformed bug-
finding tools like Driller and VUzzer.

Zhao et Al. observe hybrid fuzzing which combines fuzzing and concolic ex-
ecution has become an innovative technique for software vulnerability detection
(especially on binaries). They propose DigFuzz [40]. They design a novel Monte
Carlo-based probabilistic path prioritization model to quantify each path’s dif-
ficulty and prioritize them for concolic execution. They test their fuzzer on the
LAVA dataset and outperformed Driller and AFL.

Kim et Al. work on Linux kernel [20]. They propose a hybrid fuzzing with
three features: 1) converting indirect control transfers to direct transfers, 2) in-
ferring system call sequence to build a consistent system state, and 3) identifying
nested arguments types of system calls. The proposed HFL fuzzer outperformed
Moonshine and Syzkaller, the main fuzzers on Linux kernel.

To conclude about hybrid methods, the goal of those methods is to infer
a program model or input grammar from either observing the behavior of the
program on multiple inputs, using formal approaches, machine learning based
on a previously available corpus, or observing and summarizing the program
execution.

5.2 Algorithm improvements

Most of the fuzzers have drawbacks. Lexical approaches such as traditional
fuzzing fail because of the sheer improbability to generate valid inputs and key-
words, whereas the symbolic constraint solving of semantic approaches fail due
to the combinatorial explosion of paths. Therefore, researchers aim to improve
algorithms to avoid invalid inputs or paths.

Improving the algorithms consists of changing the metrics and the different
algorithms used in the different parts of the fuzzer:

– Genetic algorithms for choosing which entries to keep according to their code
coverage

– Input mutation algorithms
– Seed selection algorithms
– Etc.



Survey on Javascript Engines Fuzzers 13

Considering JavaScript engine, Park et Al. [28] propose a new fuzzer DIE,
including a new technique called an aspect-preserving mutation, that stochasti-
cally preserves beneficial properties and conditions of the original seed input in
generating a new test case.

Mathis et Al. present parser-directed fuzzing pFuzzer [25] as it specifically
targets syntactic processing of inputs via input parsers by a dynamic tainting of
input characters. It is able to generate syntactically valid inputs for a large class
of programs, avoiding large input errors. Padhye et Al. propose Zest [27], which
converts random-input generators into deterministic parametric generators. est
leverages program feedback in the form of code coverage and input validity to
perform feedback-directed parameter search.

Liang et Al. expose DeepFuzzer [22], an enhanced grey box fuzzer with qual-
ified seed generation, balanced seed selection, and hybrid seed mutation. They
use a symbolic execution approach to generate qualified initial seeds which then
guide the fuzzer through complex checks. They apply random and restricted
mutation strategies which are combined to maintain a dynamic balance between
global exploration and deep search.

5.3 Improving directed fuzzing

JavaScript is a language in constant evolution (same for any back-end JavaScript
runtime environment like Node.js), it is necessary to integrate the recent con-
structions and functions proposed by the standard such as ”Array.prototype. re-
duce()” and the generating expressions in JavaScript 1.8. This can be performed
by integrating adapted seeds, but also by adapting the mutation algorithms to
encourage the generation of these constructs. Moreover, the control structures
(”for”, ”if” ...) are globally little used by fuzzers, so it could also be interesting
to strengthen the mutation algorithms so that they use more of these structures.

New code sources additionally include the recent features related to the code
base of each JavaScript engine. By following the most recent additions to the
code base, we see that new features in terms of optimization are gradually being
introduced, which probably heralds the discovery of new vulnerabilities in these
new areas. For example, V8 is introducing modern compilers to its optimization
chain: Turboprop and Sparkplug7, which are described as ”midtier” compilers,
capable of generating less optimized code than the current JIT compiler, but
much faster.

The process of adding new features in fuzzer is mostly done by generating a
new grammar for the new version. When considering seeds that suit the tested
program, we called the process directed fuzzing. Established techniques such as
pattern recognition, inference, and feedback have been developed. Researchers
tend to enhance directed fuzzing by including deep-learning methods to discover
alternative directions to fuzz.

Böttinger et Al. [3] add a Q-Learning function (from deep learning theory) to
reward some mutations. This process guides the fuzzer into inputs that better fit

7 https://v8.dev/



14 L. Bichet et al.

the version or the program tested. Zong et Al. present FuzzGuard [41], a deep-
learning-based approach to predict the reachability of inputs since nine out of
ten inputs don’t strike a bug in undirected fuzzing. FuzzGuard includes a 3-layer
Convolutional Neural Network model to assume the impact of inputs before the
test process, avoiding making inputs that will not return results.

5.4 Code coverage of optimized functions

Practically, tracking full and accurate path coverage is infeasible in practice due
to the high instrumentation overhead. Thus, the fuzzers include algorithms to
cover the code.

Wang et Al. propose SAFL [38], including a coverage-directed mutation. This
fair and fast algorithm helps the fuzzing process to exercise rare and deep paths
with more significant probability. Gan et Al. present CollAFL [10], a coverage-
sensitive fuzzing solution. It mitigates path collisions by providing more accurate
coverage information, while still preserving low instrumentation overhead. It also
utilizes the coverage information to execute three innovative fuzzing strategies,
promoting the speed of discovering alternative paths and vulnerabilities.

Code coverage is currently achieved by including the necessary code to the
JavaScript engine source code before it is compiled. The compiled code generated
during the initial compilation is correctly covered and instrumented, but this is
not the case for the compiled code generated by the JIT compiler during the
execution of the engine. It would be extremely interesting to be able to obtain
information about the code coverage in these on-the-fly compiled functions, we
could specifically fuzz them by varying the inputs to them according to the code
coverage feedback.

5.5 Generic fuzzing

Most of the current fuzzers require the source code of the engine they are inter-
ested in, mainly to include to it the parts of code necessary to obtain informa-
tion like code coverage. This requirement remains not really a problem since all
mainstream browsers use open-source JavaScript engines. However, it might be
interesting to consider closed-source JavaScript engines.

It would probably be necessary to find a way to cover the code that does
not require the source code. AFL++ is a generic fuzzer project proposing to
implement the emulation of an executable via QEMU to provide this kind of
information [9]. Chen et Al. propose PolyGlot [4] a fuzzing framework that can
generate semantically valid test cases to extensively test processors of different
programming languages. They design a uniform intermediate representation to
neutralize the difference in the syntax and semantics of programming languages
in the Backus-Naur form.



Survey on Javascript Engines Fuzzers 15

6 Conclusion

Security vulnerabilities in software may lead to serious consequences, and vulner-
ability exploitation has become a hot area of research in networks and informa-
tion security. Along with the expansion of complexity of software and JavaScript
engines, fuzzing has incomparable advantages which other vulnerability exploit-
ing technology can’t provide such as static analysis.

The literature on fuzzing, and more precisely on JavaScript’s fuzzers, is
blooming since 2018 with various new techniques. The genetic evolution theory
and the development of new algorithms for seeds selection and trees pathfinding
and merging have greatly improved the ability and accuracy of fuzzers. We pro-
vide in this paper a review of recent trends in fuzzing on JavaScript engines like
model inference, hybrid fuzzing, and new genetic algorithms. Furthermore, we
provide several axes to improve the fuzzing algorithms based on some recent and
promising works. We also provide unexplored and specific axes to the JavaScript
engines.

References

1. Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.R., Teuchert, D.:
Nautilus: Fishing for deep bugs with grammars. In: NDSS (2019)

2. Bishop, M.: Vulnerabilities analysis. In: Proceedings of the Recent Advances in
intrusion Detection. pp. 125–136 (1999)

3. Böttinger, K., Godefroid, P., Singh, R.: Deep reinforcement fuzzing. In: 2018 IEEE
Security and Privacy Workshops (SPW). pp. 116–122. IEEE (2018)

4. Chen, Y., Zhong, R., Hu, H., Zhang, H., Yang, Y., Wu, D., Lee, W.: One engine
to fuzz’em all: Generic language processor testing with semantic validation. In:
Proceedings of the 42nd IEEE Symposium on Security and Privacy (IEEE S&P
2021) (2021)

5. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious javascript code. In: Proceedings of the 19th international
conference on World wide web. pp. 281–290 (2010)

6. Dewey, K., Roesch, J., Hardekopf, B.: Language fuzzing using constraint logic
programming. In: Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering. pp. 725–730 (2014)

7. Dominiak, M., Rauner, W.: Efficient approach to fuzzing interpreters. BlackHat
Asia (2019)

8. Eberlein, M., Noller, Y., Vogel, T., Grunske, L.: Evolutionary grammar-based
fuzzing. In: International Symposium on Search Based Software Engineering. pp.
105–120. Springer (2020)

9. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: Afl++: Combining incremental
steps of fuzzing research. In: 14th {USENIX} Workshop on Offensive Technologies
({WOOT} 20) (2020)

10. Gan, S., Zhang, C., Qin, X., Tu, X., Li, K., Pei, Z., Chen, Z.: Collafl: Path sensitive
fuzzing. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 679–696.
IEEE (2018)

11. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In: Pro-
ceedings of the 29th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. pp. 206–215 (2008)



16 L. Bichet et al.

12. Groß, S.: FuzzIL: Coverage guided fuzzing for JavaScript engines. Ph.D. thesis,
Master’s thesis, Karlsruhe Institute of Technology, 2018. https://saelo . . . (2018)

13. Groß, S.S.: Attacking javascript engines : A case study of javascriptcore and cve-
2016-4622 (2016), http://www.phrack.org/papers/

14. Groß, S.S.: Jit exploitation (2019), http://www.phrack.org/papers/
15. Hackett, B., Guo, S.y.: Fast and precise hybrid type inference for javascript. ACM

SIGPLAN Notices 47(6), 239–250 (2012)
16. Hamidy, G., et al.: Differential fuzzing the webassembly (2020)
17. Han, H., Oh, D., Cha, S.K.: Codealchemist: Semantics-aware code generation to

find vulnerabilities in javascript engines. In: NDSS (2019)
18. Johari, R., Sharma, P.: A survey on web application vulnerabilities (sqlia, xss)

exploitation and security engine for sql injection. In: 2012 International Conference
on Communication Systems and Network Technologies. pp. 453–458. IEEE (2012)

19. Kang, Z.: A review on javascript engine vulnerability mining. In: Journal of Physics:
Conference Series. vol. 1744, p. 042197. IOP Publishing (2021)

20. Kim, K., Jeong, D.R., Kim, C.H., Jang, Y., Shin, I., Lee, B.: Hfl: Hybrid fuzzing
on the linux kernel. In: Proceedings of the 2020 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA (2020)

21. Lee, S., Han, H., Cha, S.K., Son, S.: Montage: A neural network language model-
guided javascript engine fuzzer. arXiv preprint arXiv:2001.04107 (2020)

22. Liang, J., Jiang, Y., Wang, M., Jiao, X., Chen, Y., Song, H., Choo, K.K.R.: Deep-
fuzzer: Accelerated deep greybox fuzzing. IEEE Transactions on Dependable and
Secure Computing (2019)

23. Lin, H., Zhu, J., Peng, J., Zhu, D.: Deity: Finding deep rooted bugs in javascript
engines. In: 2019 IEEE 19th International Conference on Communication Technol-
ogy (ICCT). pp. 1585–1594. IEEE (2019)

24. Manès, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo,
M.: The art, science, and engineering of fuzzing: A survey. IEEE Transactions on
Software Engineering (2019)

25. Mathis, B., Gopinath, R., Mera, M., Kampmann, A., Höschele, M., Zeller, A.:
Parser-directed fuzzing. In: Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 548–560 (2019)

26. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of unix
utilities. Communications of the ACM 33(12), 32–44 (1990)

27. Padhye, R., Lemieux, C., Sen, K., Papadakis, M., Le Traon, Y.: Semantic fuzzing
with zest. In: Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis. pp. 329–340 (2019)

28. Park, S., Xu, W., Yun, I., Jang, D., Kim, T.: Fuzzing javascript engines with
aspect-preserving mutation. In: 2020 IEEE Symposium on Security and Privacy
(SP). pp. 1629–1642. IEEE (2020)

29. Report, F.I.: Sea of nodes in v8 (2015), https://darksi.de/d.sea-of-nodes/
30. Schwarz, M., Lackner, F., Gruss, D.: Javascript template attacks: Automatically

inferring host information for targeted exploits. In: NDSS (2019)
31. Sevcik, J.: Deoptimization in v8 (2016)
32. @sirdarkcat, t.: Eat sleep pwn repeat browser training (2019)
33. Sotirov, A.: Heap feng shui in javascript. Black Hat Europe 2007, 11–20 (2007)
34. Thiyab, R.M., Ali, M., Basil, F., et al.: The impact of sql injection attacks on

the security of databases. In: Proceedings of the 6th International Conference of
Computing & Informatics. pp. 323–331 (2017)

35. Titzer, B.L.: Turbofan jit design



Survey on Javascript Engines Fuzzers 17

36. Wang, J., Chen, B., Wei, L., Liu, Y.: Skyfire: Data-driven seed generation for
fuzzing. In: 2017 IEEE Symposium on Security and Privacy (SP). pp. 579–594.
IEEE (2017)

37. Wang, J., Chen, B., Wei, L., Liu, Y.: Superion: Grammar-aware greybox fuzzing.
In: 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). pp. 724–735. IEEE (2019)

38. Wang, M., Liang, J., Chen, Y., Jiang, Y., Jiao, X., Liu, H., Zhao, X., Sun, J.: Safl:
increasing and accelerating testing coverage with symbolic execution and guided
fuzzing. In: Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings. pp. 61–64 (2018)

39. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: {QSYM}: A practical concolic execu-
tion engine tailored for hybrid fuzzing. In: 27th {USENIX} Security Symposium
({USENIX} Security 18). pp. 745–761 (2018)

40. Zhao, L., Duan, Y., Yin, H., Xuan, J.: Send hardest problems my way: Probabilistic
path prioritization for hybrid fuzzing. In: NDSS (2019)

41. Zong, P., Lv, T., Wang, D., Deng, Z., Liang, R., Chen, K.: Fuzzguard: Filtering
out unreachable inputs in directed grey-box fuzzing through deep learning. In: 29th
{USENIX} Security Symposium ({USENIX} Security 20). pp. 2255–2269 (2020)


